You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dsytri_3x.f 19 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642
  1. *> \brief \b DSYTRI_3X
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DSYTRI_3X + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsytri_3x.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsytri_3x.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsytri_3x.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DSYTRI_3X( UPLO, N, A, LDA, E, IPIV, WORK, NB, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER UPLO
  25. * INTEGER INFO, LDA, N, NB
  26. * ..
  27. * .. Array Arguments ..
  28. * INTEGER IPIV( * )
  29. * DOUBLE PRECISION A( LDA, * ), E( * ), WORK( N+NB+1, * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *> DSYTRI_3X computes the inverse of a real symmetric indefinite
  38. *> matrix A using the factorization computed by DSYTRF_RK or DSYTRF_BK:
  39. *>
  40. *> A = P*U*D*(U**T)*(P**T) or A = P*L*D*(L**T)*(P**T),
  41. *>
  42. *> where U (or L) is unit upper (or lower) triangular matrix,
  43. *> U**T (or L**T) is the transpose of U (or L), P is a permutation
  44. *> matrix, P**T is the transpose of P, and D is symmetric and block
  45. *> diagonal with 1-by-1 and 2-by-2 diagonal blocks.
  46. *>
  47. *> This is the blocked version of the algorithm, calling Level 3 BLAS.
  48. *> \endverbatim
  49. *
  50. * Arguments:
  51. * ==========
  52. *
  53. *> \param[in] UPLO
  54. *> \verbatim
  55. *> UPLO is CHARACTER*1
  56. *> Specifies whether the details of the factorization are
  57. *> stored as an upper or lower triangular matrix.
  58. *> = 'U': Upper triangle of A is stored;
  59. *> = 'L': Lower triangle of A is stored.
  60. *> \endverbatim
  61. *>
  62. *> \param[in] N
  63. *> \verbatim
  64. *> N is INTEGER
  65. *> The order of the matrix A. N >= 0.
  66. *> \endverbatim
  67. *>
  68. *> \param[in,out] A
  69. *> \verbatim
  70. *> A is DOUBLE PRECISION array, dimension (LDA,N)
  71. *> On entry, diagonal of the block diagonal matrix D and
  72. *> factors U or L as computed by DSYTRF_RK and DSYTRF_BK:
  73. *> a) ONLY diagonal elements of the symmetric block diagonal
  74. *> matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
  75. *> (superdiagonal (or subdiagonal) elements of D
  76. *> should be provided on entry in array E), and
  77. *> b) If UPLO = 'U': factor U in the superdiagonal part of A.
  78. *> If UPLO = 'L': factor L in the subdiagonal part of A.
  79. *>
  80. *> On exit, if INFO = 0, the symmetric inverse of the original
  81. *> matrix.
  82. *> If UPLO = 'U': the upper triangular part of the inverse
  83. *> is formed and the part of A below the diagonal is not
  84. *> referenced;
  85. *> If UPLO = 'L': the lower triangular part of the inverse
  86. *> is formed and the part of A above the diagonal is not
  87. *> referenced.
  88. *> \endverbatim
  89. *>
  90. *> \param[in] LDA
  91. *> \verbatim
  92. *> LDA is INTEGER
  93. *> The leading dimension of the array A. LDA >= max(1,N).
  94. *> \endverbatim
  95. *>
  96. *> \param[in] E
  97. *> \verbatim
  98. *> E is DOUBLE PRECISION array, dimension (N)
  99. *> On entry, contains the superdiagonal (or subdiagonal)
  100. *> elements of the symmetric block diagonal matrix D
  101. *> with 1-by-1 or 2-by-2 diagonal blocks, where
  102. *> If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) not referenced;
  103. *> If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) not referenced.
  104. *>
  105. *> NOTE: For 1-by-1 diagonal block D(k), where
  106. *> 1 <= k <= N, the element E(k) is not referenced in both
  107. *> UPLO = 'U' or UPLO = 'L' cases.
  108. *> \endverbatim
  109. *>
  110. *> \param[in] IPIV
  111. *> \verbatim
  112. *> IPIV is INTEGER array, dimension (N)
  113. *> Details of the interchanges and the block structure of D
  114. *> as determined by DSYTRF_RK or DSYTRF_BK.
  115. *> \endverbatim
  116. *>
  117. *> \param[out] WORK
  118. *> \verbatim
  119. *> WORK is DOUBLE PRECISION array, dimension (N+NB+1,NB+3).
  120. *> \endverbatim
  121. *>
  122. *> \param[in] NB
  123. *> \verbatim
  124. *> NB is INTEGER
  125. *> Block size.
  126. *> \endverbatim
  127. *>
  128. *> \param[out] INFO
  129. *> \verbatim
  130. *> INFO is INTEGER
  131. *> = 0: successful exit
  132. *> < 0: if INFO = -i, the i-th argument had an illegal value
  133. *> > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
  134. *> inverse could not be computed.
  135. *> \endverbatim
  136. *
  137. * Authors:
  138. * ========
  139. *
  140. *> \author Univ. of Tennessee
  141. *> \author Univ. of California Berkeley
  142. *> \author Univ. of Colorado Denver
  143. *> \author NAG Ltd.
  144. *
  145. *> \ingroup doubleSYcomputational
  146. *
  147. *> \par Contributors:
  148. * ==================
  149. *> \verbatim
  150. *>
  151. *> June 2017, Igor Kozachenko,
  152. *> Computer Science Division,
  153. *> University of California, Berkeley
  154. *>
  155. *> \endverbatim
  156. *
  157. * =====================================================================
  158. SUBROUTINE DSYTRI_3X( UPLO, N, A, LDA, E, IPIV, WORK, NB, INFO )
  159. *
  160. * -- LAPACK computational routine --
  161. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  162. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  163. *
  164. * .. Scalar Arguments ..
  165. CHARACTER UPLO
  166. INTEGER INFO, LDA, N, NB
  167. * ..
  168. * .. Array Arguments ..
  169. INTEGER IPIV( * )
  170. DOUBLE PRECISION A( LDA, * ), E( * ), WORK( N+NB+1, * )
  171. * ..
  172. *
  173. * =====================================================================
  174. *
  175. * .. Parameters ..
  176. DOUBLE PRECISION ONE, ZERO
  177. PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  178. * ..
  179. * .. Local Scalars ..
  180. LOGICAL UPPER
  181. INTEGER CUT, I, ICOUNT, INVD, IP, K, NNB, J, U11
  182. DOUBLE PRECISION AK, AKKP1, AKP1, D, T, U01_I_J, U01_IP1_J,
  183. $ U11_I_J, U11_IP1_J
  184. * ..
  185. * .. External Functions ..
  186. LOGICAL LSAME
  187. EXTERNAL LSAME
  188. * ..
  189. * .. External Subroutines ..
  190. EXTERNAL DGEMM, DSYSWAPR, DTRTRI, DTRMM, XERBLA
  191. * ..
  192. * .. Intrinsic Functions ..
  193. INTRINSIC ABS, MAX, MOD
  194. * ..
  195. * .. Executable Statements ..
  196. *
  197. * Test the input parameters.
  198. *
  199. INFO = 0
  200. UPPER = LSAME( UPLO, 'U' )
  201. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  202. INFO = -1
  203. ELSE IF( N.LT.0 ) THEN
  204. INFO = -2
  205. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  206. INFO = -4
  207. END IF
  208. *
  209. * Quick return if possible
  210. *
  211. IF( INFO.NE.0 ) THEN
  212. CALL XERBLA( 'DSYTRI_3X', -INFO )
  213. RETURN
  214. END IF
  215. IF( N.EQ.0 )
  216. $ RETURN
  217. *
  218. * Workspace got Non-diag elements of D
  219. *
  220. DO K = 1, N
  221. WORK( K, 1 ) = E( K )
  222. END DO
  223. *
  224. * Check that the diagonal matrix D is nonsingular.
  225. *
  226. IF( UPPER ) THEN
  227. *
  228. * Upper triangular storage: examine D from bottom to top
  229. *
  230. DO INFO = N, 1, -1
  231. IF( IPIV( INFO ).GT.0 .AND. A( INFO, INFO ).EQ.ZERO )
  232. $ RETURN
  233. END DO
  234. ELSE
  235. *
  236. * Lower triangular storage: examine D from top to bottom.
  237. *
  238. DO INFO = 1, N
  239. IF( IPIV( INFO ).GT.0 .AND. A( INFO, INFO ).EQ.ZERO )
  240. $ RETURN
  241. END DO
  242. END IF
  243. *
  244. INFO = 0
  245. *
  246. * Splitting Workspace
  247. * U01 is a block ( N, NB+1 )
  248. * The first element of U01 is in WORK( 1, 1 )
  249. * U11 is a block ( NB+1, NB+1 )
  250. * The first element of U11 is in WORK( N+1, 1 )
  251. *
  252. U11 = N
  253. *
  254. * INVD is a block ( N, 2 )
  255. * The first element of INVD is in WORK( 1, INVD )
  256. *
  257. INVD = NB + 2
  258. IF( UPPER ) THEN
  259. *
  260. * Begin Upper
  261. *
  262. * invA = P * inv(U**T) * inv(D) * inv(U) * P**T.
  263. *
  264. CALL DTRTRI( UPLO, 'U', N, A, LDA, INFO )
  265. *
  266. * inv(D) and inv(D) * inv(U)
  267. *
  268. K = 1
  269. DO WHILE( K.LE.N )
  270. IF( IPIV( K ).GT.0 ) THEN
  271. * 1 x 1 diagonal NNB
  272. WORK( K, INVD ) = ONE / A( K, K )
  273. WORK( K, INVD+1 ) = ZERO
  274. ELSE
  275. * 2 x 2 diagonal NNB
  276. T = WORK( K+1, 1 )
  277. AK = A( K, K ) / T
  278. AKP1 = A( K+1, K+1 ) / T
  279. AKKP1 = WORK( K+1, 1 ) / T
  280. D = T*( AK*AKP1-ONE )
  281. WORK( K, INVD ) = AKP1 / D
  282. WORK( K+1, INVD+1 ) = AK / D
  283. WORK( K, INVD+1 ) = -AKKP1 / D
  284. WORK( K+1, INVD ) = WORK( K, INVD+1 )
  285. K = K + 1
  286. END IF
  287. K = K + 1
  288. END DO
  289. *
  290. * inv(U**T) = (inv(U))**T
  291. *
  292. * inv(U**T) * inv(D) * inv(U)
  293. *
  294. CUT = N
  295. DO WHILE( CUT.GT.0 )
  296. NNB = NB
  297. IF( CUT.LE.NNB ) THEN
  298. NNB = CUT
  299. ELSE
  300. ICOUNT = 0
  301. * count negative elements,
  302. DO I = CUT+1-NNB, CUT
  303. IF( IPIV( I ).LT.0 ) ICOUNT = ICOUNT + 1
  304. END DO
  305. * need a even number for a clear cut
  306. IF( MOD( ICOUNT, 2 ).EQ.1 ) NNB = NNB + 1
  307. END IF
  308. CUT = CUT - NNB
  309. *
  310. * U01 Block
  311. *
  312. DO I = 1, CUT
  313. DO J = 1, NNB
  314. WORK( I, J ) = A( I, CUT+J )
  315. END DO
  316. END DO
  317. *
  318. * U11 Block
  319. *
  320. DO I = 1, NNB
  321. WORK( U11+I, I ) = ONE
  322. DO J = 1, I-1
  323. WORK( U11+I, J ) = ZERO
  324. END DO
  325. DO J = I+1, NNB
  326. WORK( U11+I, J ) = A( CUT+I, CUT+J )
  327. END DO
  328. END DO
  329. *
  330. * invD * U01
  331. *
  332. I = 1
  333. DO WHILE( I.LE.CUT )
  334. IF( IPIV( I ).GT.0 ) THEN
  335. DO J = 1, NNB
  336. WORK( I, J ) = WORK( I, INVD ) * WORK( I, J )
  337. END DO
  338. ELSE
  339. DO J = 1, NNB
  340. U01_I_J = WORK( I, J )
  341. U01_IP1_J = WORK( I+1, J )
  342. WORK( I, J ) = WORK( I, INVD ) * U01_I_J
  343. $ + WORK( I, INVD+1 ) * U01_IP1_J
  344. WORK( I+1, J ) = WORK( I+1, INVD ) * U01_I_J
  345. $ + WORK( I+1, INVD+1 ) * U01_IP1_J
  346. END DO
  347. I = I + 1
  348. END IF
  349. I = I + 1
  350. END DO
  351. *
  352. * invD1 * U11
  353. *
  354. I = 1
  355. DO WHILE ( I.LE.NNB )
  356. IF( IPIV( CUT+I ).GT.0 ) THEN
  357. DO J = I, NNB
  358. WORK( U11+I, J ) = WORK(CUT+I,INVD) * WORK(U11+I,J)
  359. END DO
  360. ELSE
  361. DO J = I, NNB
  362. U11_I_J = WORK(U11+I,J)
  363. U11_IP1_J = WORK(U11+I+1,J)
  364. WORK( U11+I, J ) = WORK(CUT+I,INVD) * WORK(U11+I,J)
  365. $ + WORK(CUT+I,INVD+1) * WORK(U11+I+1,J)
  366. WORK( U11+I+1, J ) = WORK(CUT+I+1,INVD) * U11_I_J
  367. $ + WORK(CUT+I+1,INVD+1) * U11_IP1_J
  368. END DO
  369. I = I + 1
  370. END IF
  371. I = I + 1
  372. END DO
  373. *
  374. * U11**T * invD1 * U11 -> U11
  375. *
  376. CALL DTRMM( 'L', 'U', 'T', 'U', NNB, NNB,
  377. $ ONE, A( CUT+1, CUT+1 ), LDA, WORK( U11+1, 1 ),
  378. $ N+NB+1 )
  379. *
  380. DO I = 1, NNB
  381. DO J = I, NNB
  382. A( CUT+I, CUT+J ) = WORK( U11+I, J )
  383. END DO
  384. END DO
  385. *
  386. * U01**T * invD * U01 -> A( CUT+I, CUT+J )
  387. *
  388. CALL DGEMM( 'T', 'N', NNB, NNB, CUT, ONE, A( 1, CUT+1 ),
  389. $ LDA, WORK, N+NB+1, ZERO, WORK(U11+1,1), N+NB+1 )
  390. *
  391. * U11 = U11**T * invD1 * U11 + U01**T * invD * U01
  392. *
  393. DO I = 1, NNB
  394. DO J = I, NNB
  395. A( CUT+I, CUT+J ) = A( CUT+I, CUT+J ) + WORK(U11+I,J)
  396. END DO
  397. END DO
  398. *
  399. * U01 = U00**T * invD0 * U01
  400. *
  401. CALL DTRMM( 'L', UPLO, 'T', 'U', CUT, NNB,
  402. $ ONE, A, LDA, WORK, N+NB+1 )
  403. *
  404. * Update U01
  405. *
  406. DO I = 1, CUT
  407. DO J = 1, NNB
  408. A( I, CUT+J ) = WORK( I, J )
  409. END DO
  410. END DO
  411. *
  412. * Next Block
  413. *
  414. END DO
  415. *
  416. * Apply PERMUTATIONS P and P**T:
  417. * P * inv(U**T) * inv(D) * inv(U) * P**T.
  418. * Interchange rows and columns I and IPIV(I) in reverse order
  419. * from the formation order of IPIV vector for Upper case.
  420. *
  421. * ( We can use a loop over IPIV with increment 1,
  422. * since the ABS value of IPIV(I) represents the row (column)
  423. * index of the interchange with row (column) i in both 1x1
  424. * and 2x2 pivot cases, i.e. we don't need separate code branches
  425. * for 1x1 and 2x2 pivot cases )
  426. *
  427. DO I = 1, N
  428. IP = ABS( IPIV( I ) )
  429. IF( IP.NE.I ) THEN
  430. IF (I .LT. IP) CALL DSYSWAPR( UPLO, N, A, LDA, I ,IP )
  431. IF (I .GT. IP) CALL DSYSWAPR( UPLO, N, A, LDA, IP ,I )
  432. END IF
  433. END DO
  434. *
  435. ELSE
  436. *
  437. * Begin Lower
  438. *
  439. * inv A = P * inv(L**T) * inv(D) * inv(L) * P**T.
  440. *
  441. CALL DTRTRI( UPLO, 'U', N, A, LDA, INFO )
  442. *
  443. * inv(D) and inv(D) * inv(L)
  444. *
  445. K = N
  446. DO WHILE ( K .GE. 1 )
  447. IF( IPIV( K ).GT.0 ) THEN
  448. * 1 x 1 diagonal NNB
  449. WORK( K, INVD ) = ONE / A( K, K )
  450. WORK( K, INVD+1 ) = ZERO
  451. ELSE
  452. * 2 x 2 diagonal NNB
  453. T = WORK( K-1, 1 )
  454. AK = A( K-1, K-1 ) / T
  455. AKP1 = A( K, K ) / T
  456. AKKP1 = WORK( K-1, 1 ) / T
  457. D = T*( AK*AKP1-ONE )
  458. WORK( K-1, INVD ) = AKP1 / D
  459. WORK( K, INVD ) = AK / D
  460. WORK( K, INVD+1 ) = -AKKP1 / D
  461. WORK( K-1, INVD+1 ) = WORK( K, INVD+1 )
  462. K = K - 1
  463. END IF
  464. K = K - 1
  465. END DO
  466. *
  467. * inv(L**T) = (inv(L))**T
  468. *
  469. * inv(L**T) * inv(D) * inv(L)
  470. *
  471. CUT = 0
  472. DO WHILE( CUT.LT.N )
  473. NNB = NB
  474. IF( (CUT + NNB).GT.N ) THEN
  475. NNB = N - CUT
  476. ELSE
  477. ICOUNT = 0
  478. * count negative elements,
  479. DO I = CUT + 1, CUT+NNB
  480. IF ( IPIV( I ).LT.0 ) ICOUNT = ICOUNT + 1
  481. END DO
  482. * need a even number for a clear cut
  483. IF( MOD( ICOUNT, 2 ).EQ.1 ) NNB = NNB + 1
  484. END IF
  485. *
  486. * L21 Block
  487. *
  488. DO I = 1, N-CUT-NNB
  489. DO J = 1, NNB
  490. WORK( I, J ) = A( CUT+NNB+I, CUT+J )
  491. END DO
  492. END DO
  493. *
  494. * L11 Block
  495. *
  496. DO I = 1, NNB
  497. WORK( U11+I, I) = ONE
  498. DO J = I+1, NNB
  499. WORK( U11+I, J ) = ZERO
  500. END DO
  501. DO J = 1, I-1
  502. WORK( U11+I, J ) = A( CUT+I, CUT+J )
  503. END DO
  504. END DO
  505. *
  506. * invD*L21
  507. *
  508. I = N-CUT-NNB
  509. DO WHILE( I.GE.1 )
  510. IF( IPIV( CUT+NNB+I ).GT.0 ) THEN
  511. DO J = 1, NNB
  512. WORK( I, J ) = WORK( CUT+NNB+I, INVD) * WORK( I, J)
  513. END DO
  514. ELSE
  515. DO J = 1, NNB
  516. U01_I_J = WORK(I,J)
  517. U01_IP1_J = WORK(I-1,J)
  518. WORK(I,J)=WORK(CUT+NNB+I,INVD)*U01_I_J+
  519. $ WORK(CUT+NNB+I,INVD+1)*U01_IP1_J
  520. WORK(I-1,J)=WORK(CUT+NNB+I-1,INVD+1)*U01_I_J+
  521. $ WORK(CUT+NNB+I-1,INVD)*U01_IP1_J
  522. END DO
  523. I = I - 1
  524. END IF
  525. I = I - 1
  526. END DO
  527. *
  528. * invD1*L11
  529. *
  530. I = NNB
  531. DO WHILE( I.GE.1 )
  532. IF( IPIV( CUT+I ).GT.0 ) THEN
  533. DO J = 1, NNB
  534. WORK( U11+I, J ) = WORK( CUT+I, INVD)*WORK(U11+I,J)
  535. END DO
  536. ELSE
  537. DO J = 1, NNB
  538. U11_I_J = WORK( U11+I, J )
  539. U11_IP1_J = WORK( U11+I-1, J )
  540. WORK( U11+I, J ) = WORK(CUT+I,INVD) * WORK(U11+I,J)
  541. $ + WORK(CUT+I,INVD+1) * U11_IP1_J
  542. WORK( U11+I-1, J ) = WORK(CUT+I-1,INVD+1) * U11_I_J
  543. $ + WORK(CUT+I-1,INVD) * U11_IP1_J
  544. END DO
  545. I = I - 1
  546. END IF
  547. I = I - 1
  548. END DO
  549. *
  550. * L11**T * invD1 * L11 -> L11
  551. *
  552. CALL DTRMM( 'L', UPLO, 'T', 'U', NNB, NNB, ONE,
  553. $ A( CUT+1, CUT+1 ), LDA, WORK( U11+1, 1 ),
  554. $ N+NB+1 )
  555. *
  556. DO I = 1, NNB
  557. DO J = 1, I
  558. A( CUT+I, CUT+J ) = WORK( U11+I, J )
  559. END DO
  560. END DO
  561. *
  562. IF( (CUT+NNB).LT.N ) THEN
  563. *
  564. * L21**T * invD2*L21 -> A( CUT+I, CUT+J )
  565. *
  566. CALL DGEMM( 'T', 'N', NNB, NNB, N-NNB-CUT, ONE,
  567. $ A( CUT+NNB+1, CUT+1 ), LDA, WORK, N+NB+1,
  568. $ ZERO, WORK( U11+1, 1 ), N+NB+1 )
  569. *
  570. * L11 = L11**T * invD1 * L11 + U01**T * invD * U01
  571. *
  572. DO I = 1, NNB
  573. DO J = 1, I
  574. A( CUT+I, CUT+J ) = A( CUT+I, CUT+J )+WORK(U11+I,J)
  575. END DO
  576. END DO
  577. *
  578. * L01 = L22**T * invD2 * L21
  579. *
  580. CALL DTRMM( 'L', UPLO, 'T', 'U', N-NNB-CUT, NNB, ONE,
  581. $ A( CUT+NNB+1, CUT+NNB+1 ), LDA, WORK,
  582. $ N+NB+1 )
  583. *
  584. * Update L21
  585. *
  586. DO I = 1, N-CUT-NNB
  587. DO J = 1, NNB
  588. A( CUT+NNB+I, CUT+J ) = WORK( I, J )
  589. END DO
  590. END DO
  591. *
  592. ELSE
  593. *
  594. * L11 = L11**T * invD1 * L11
  595. *
  596. DO I = 1, NNB
  597. DO J = 1, I
  598. A( CUT+I, CUT+J ) = WORK( U11+I, J )
  599. END DO
  600. END DO
  601. END IF
  602. *
  603. * Next Block
  604. *
  605. CUT = CUT + NNB
  606. *
  607. END DO
  608. *
  609. * Apply PERMUTATIONS P and P**T:
  610. * P * inv(L**T) * inv(D) * inv(L) * P**T.
  611. * Interchange rows and columns I and IPIV(I) in reverse order
  612. * from the formation order of IPIV vector for Lower case.
  613. *
  614. * ( We can use a loop over IPIV with increment -1,
  615. * since the ABS value of IPIV(I) represents the row (column)
  616. * index of the interchange with row (column) i in both 1x1
  617. * and 2x2 pivot cases, i.e. we don't need separate code branches
  618. * for 1x1 and 2x2 pivot cases )
  619. *
  620. DO I = N, 1, -1
  621. IP = ABS( IPIV( I ) )
  622. IF( IP.NE.I ) THEN
  623. IF (I .LT. IP) CALL DSYSWAPR( UPLO, N, A, LDA, I ,IP )
  624. IF (I .GT. IP) CALL DSYSWAPR( UPLO, N, A, LDA, IP ,I )
  625. END IF
  626. END DO
  627. *
  628. END IF
  629. *
  630. RETURN
  631. *
  632. * End of DSYTRI_3X
  633. *
  634. END