You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dla_syrfsx_extended.f 26 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708
  1. *> \brief \b DLA_SYRFSX_EXTENDED improves the computed solution to a system of linear equations for symmetric indefinite matrices by performing extra-precise iterative refinement and provides error bounds and backward error estimates for the solution.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DLA_SYRFSX_EXTENDED + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dla_syrfsx_extended.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dla_syrfsx_extended.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dla_syrfsx_extended.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DLA_SYRFSX_EXTENDED( PREC_TYPE, UPLO, N, NRHS, A, LDA,
  22. * AF, LDAF, IPIV, COLEQU, C, B, LDB,
  23. * Y, LDY, BERR_OUT, N_NORMS,
  24. * ERR_BNDS_NORM, ERR_BNDS_COMP, RES,
  25. * AYB, DY, Y_TAIL, RCOND, ITHRESH,
  26. * RTHRESH, DZ_UB, IGNORE_CWISE,
  27. * INFO )
  28. *
  29. * .. Scalar Arguments ..
  30. * INTEGER INFO, LDA, LDAF, LDB, LDY, N, NRHS, PREC_TYPE,
  31. * $ N_NORMS, ITHRESH
  32. * CHARACTER UPLO
  33. * LOGICAL COLEQU, IGNORE_CWISE
  34. * DOUBLE PRECISION RTHRESH, DZ_UB
  35. * ..
  36. * .. Array Arguments ..
  37. * INTEGER IPIV( * )
  38. * DOUBLE PRECISION A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
  39. * $ Y( LDY, * ), RES( * ), DY( * ), Y_TAIL( * )
  40. * DOUBLE PRECISION C( * ), AYB( * ), RCOND, BERR_OUT( * ),
  41. * $ ERR_BNDS_NORM( NRHS, * ),
  42. * $ ERR_BNDS_COMP( NRHS, * )
  43. * ..
  44. *
  45. *
  46. *> \par Purpose:
  47. * =============
  48. *>
  49. *> \verbatim
  50. *>
  51. *>
  52. *> DLA_SYRFSX_EXTENDED improves the computed solution to a system of
  53. *> linear equations by performing extra-precise iterative refinement
  54. *> and provides error bounds and backward error estimates for the solution.
  55. *> This subroutine is called by DSYRFSX to perform iterative refinement.
  56. *> In addition to normwise error bound, the code provides maximum
  57. *> componentwise error bound if possible. See comments for ERR_BNDS_NORM
  58. *> and ERR_BNDS_COMP for details of the error bounds. Note that this
  59. *> subroutine is only responsible for setting the second fields of
  60. *> ERR_BNDS_NORM and ERR_BNDS_COMP.
  61. *> \endverbatim
  62. *
  63. * Arguments:
  64. * ==========
  65. *
  66. *> \param[in] PREC_TYPE
  67. *> \verbatim
  68. *> PREC_TYPE is INTEGER
  69. *> Specifies the intermediate precision to be used in refinement.
  70. *> The value is defined by ILAPREC(P) where P is a CHARACTER and P
  71. *> = 'S': Single
  72. *> = 'D': Double
  73. *> = 'I': Indigenous
  74. *> = 'X' or 'E': Extra
  75. *> \endverbatim
  76. *>
  77. *> \param[in] UPLO
  78. *> \verbatim
  79. *> UPLO is CHARACTER*1
  80. *> = 'U': Upper triangle of A is stored;
  81. *> = 'L': Lower triangle of A is stored.
  82. *> \endverbatim
  83. *>
  84. *> \param[in] N
  85. *> \verbatim
  86. *> N is INTEGER
  87. *> The number of linear equations, i.e., the order of the
  88. *> matrix A. N >= 0.
  89. *> \endverbatim
  90. *>
  91. *> \param[in] NRHS
  92. *> \verbatim
  93. *> NRHS is INTEGER
  94. *> The number of right-hand-sides, i.e., the number of columns of the
  95. *> matrix B.
  96. *> \endverbatim
  97. *>
  98. *> \param[in] A
  99. *> \verbatim
  100. *> A is DOUBLE PRECISION array, dimension (LDA,N)
  101. *> On entry, the N-by-N matrix A.
  102. *> \endverbatim
  103. *>
  104. *> \param[in] LDA
  105. *> \verbatim
  106. *> LDA is INTEGER
  107. *> The leading dimension of the array A. LDA >= max(1,N).
  108. *> \endverbatim
  109. *>
  110. *> \param[in] AF
  111. *> \verbatim
  112. *> AF is DOUBLE PRECISION array, dimension (LDAF,N)
  113. *> The block diagonal matrix D and the multipliers used to
  114. *> obtain the factor U or L as computed by DSYTRF.
  115. *> \endverbatim
  116. *>
  117. *> \param[in] LDAF
  118. *> \verbatim
  119. *> LDAF is INTEGER
  120. *> The leading dimension of the array AF. LDAF >= max(1,N).
  121. *> \endverbatim
  122. *>
  123. *> \param[in] IPIV
  124. *> \verbatim
  125. *> IPIV is INTEGER array, dimension (N)
  126. *> Details of the interchanges and the block structure of D
  127. *> as determined by DSYTRF.
  128. *> \endverbatim
  129. *>
  130. *> \param[in] COLEQU
  131. *> \verbatim
  132. *> COLEQU is LOGICAL
  133. *> If .TRUE. then column equilibration was done to A before calling
  134. *> this routine. This is needed to compute the solution and error
  135. *> bounds correctly.
  136. *> \endverbatim
  137. *>
  138. *> \param[in] C
  139. *> \verbatim
  140. *> C is DOUBLE PRECISION array, dimension (N)
  141. *> The column scale factors for A. If COLEQU = .FALSE., C
  142. *> is not accessed. If C is input, each element of C should be a power
  143. *> of the radix to ensure a reliable solution and error estimates.
  144. *> Scaling by powers of the radix does not cause rounding errors unless
  145. *> the result underflows or overflows. Rounding errors during scaling
  146. *> lead to refining with a matrix that is not equivalent to the
  147. *> input matrix, producing error estimates that may not be
  148. *> reliable.
  149. *> \endverbatim
  150. *>
  151. *> \param[in] B
  152. *> \verbatim
  153. *> B is DOUBLE PRECISION array, dimension (LDB,NRHS)
  154. *> The right-hand-side matrix B.
  155. *> \endverbatim
  156. *>
  157. *> \param[in] LDB
  158. *> \verbatim
  159. *> LDB is INTEGER
  160. *> The leading dimension of the array B. LDB >= max(1,N).
  161. *> \endverbatim
  162. *>
  163. *> \param[in,out] Y
  164. *> \verbatim
  165. *> Y is DOUBLE PRECISION array, dimension (LDY,NRHS)
  166. *> On entry, the solution matrix X, as computed by DSYTRS.
  167. *> On exit, the improved solution matrix Y.
  168. *> \endverbatim
  169. *>
  170. *> \param[in] LDY
  171. *> \verbatim
  172. *> LDY is INTEGER
  173. *> The leading dimension of the array Y. LDY >= max(1,N).
  174. *> \endverbatim
  175. *>
  176. *> \param[out] BERR_OUT
  177. *> \verbatim
  178. *> BERR_OUT is DOUBLE PRECISION array, dimension (NRHS)
  179. *> On exit, BERR_OUT(j) contains the componentwise relative backward
  180. *> error for right-hand-side j from the formula
  181. *> max(i) ( abs(RES(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
  182. *> where abs(Z) is the componentwise absolute value of the matrix
  183. *> or vector Z. This is computed by DLA_LIN_BERR.
  184. *> \endverbatim
  185. *>
  186. *> \param[in] N_NORMS
  187. *> \verbatim
  188. *> N_NORMS is INTEGER
  189. *> Determines which error bounds to return (see ERR_BNDS_NORM
  190. *> and ERR_BNDS_COMP).
  191. *> If N_NORMS >= 1 return normwise error bounds.
  192. *> If N_NORMS >= 2 return componentwise error bounds.
  193. *> \endverbatim
  194. *>
  195. *> \param[in,out] ERR_BNDS_NORM
  196. *> \verbatim
  197. *> ERR_BNDS_NORM is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
  198. *> For each right-hand side, this array contains information about
  199. *> various error bounds and condition numbers corresponding to the
  200. *> normwise relative error, which is defined as follows:
  201. *>
  202. *> Normwise relative error in the ith solution vector:
  203. *> max_j (abs(XTRUE(j,i) - X(j,i)))
  204. *> ------------------------------
  205. *> max_j abs(X(j,i))
  206. *>
  207. *> The array is indexed by the type of error information as described
  208. *> below. There currently are up to three pieces of information
  209. *> returned.
  210. *>
  211. *> The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
  212. *> right-hand side.
  213. *>
  214. *> The second index in ERR_BNDS_NORM(:,err) contains the following
  215. *> three fields:
  216. *> err = 1 "Trust/don't trust" boolean. Trust the answer if the
  217. *> reciprocal condition number is less than the threshold
  218. *> sqrt(n) * slamch('Epsilon').
  219. *>
  220. *> err = 2 "Guaranteed" error bound: The estimated forward error,
  221. *> almost certainly within a factor of 10 of the true error
  222. *> so long as the next entry is greater than the threshold
  223. *> sqrt(n) * slamch('Epsilon'). This error bound should only
  224. *> be trusted if the previous boolean is true.
  225. *>
  226. *> err = 3 Reciprocal condition number: Estimated normwise
  227. *> reciprocal condition number. Compared with the threshold
  228. *> sqrt(n) * slamch('Epsilon') to determine if the error
  229. *> estimate is "guaranteed". These reciprocal condition
  230. *> numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
  231. *> appropriately scaled matrix Z.
  232. *> Let Z = S*A, where S scales each row by a power of the
  233. *> radix so all absolute row sums of Z are approximately 1.
  234. *>
  235. *> This subroutine is only responsible for setting the second field
  236. *> above.
  237. *> See Lapack Working Note 165 for further details and extra
  238. *> cautions.
  239. *> \endverbatim
  240. *>
  241. *> \param[in,out] ERR_BNDS_COMP
  242. *> \verbatim
  243. *> ERR_BNDS_COMP is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
  244. *> For each right-hand side, this array contains information about
  245. *> various error bounds and condition numbers corresponding to the
  246. *> componentwise relative error, which is defined as follows:
  247. *>
  248. *> Componentwise relative error in the ith solution vector:
  249. *> abs(XTRUE(j,i) - X(j,i))
  250. *> max_j ----------------------
  251. *> abs(X(j,i))
  252. *>
  253. *> The array is indexed by the right-hand side i (on which the
  254. *> componentwise relative error depends), and the type of error
  255. *> information as described below. There currently are up to three
  256. *> pieces of information returned for each right-hand side. If
  257. *> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
  258. *> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS < 3, then at most
  259. *> the first (:,N_ERR_BNDS) entries are returned.
  260. *>
  261. *> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
  262. *> right-hand side.
  263. *>
  264. *> The second index in ERR_BNDS_COMP(:,err) contains the following
  265. *> three fields:
  266. *> err = 1 "Trust/don't trust" boolean. Trust the answer if the
  267. *> reciprocal condition number is less than the threshold
  268. *> sqrt(n) * slamch('Epsilon').
  269. *>
  270. *> err = 2 "Guaranteed" error bound: The estimated forward error,
  271. *> almost certainly within a factor of 10 of the true error
  272. *> so long as the next entry is greater than the threshold
  273. *> sqrt(n) * slamch('Epsilon'). This error bound should only
  274. *> be trusted if the previous boolean is true.
  275. *>
  276. *> err = 3 Reciprocal condition number: Estimated componentwise
  277. *> reciprocal condition number. Compared with the threshold
  278. *> sqrt(n) * slamch('Epsilon') to determine if the error
  279. *> estimate is "guaranteed". These reciprocal condition
  280. *> numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
  281. *> appropriately scaled matrix Z.
  282. *> Let Z = S*(A*diag(x)), where x is the solution for the
  283. *> current right-hand side and S scales each row of
  284. *> A*diag(x) by a power of the radix so all absolute row
  285. *> sums of Z are approximately 1.
  286. *>
  287. *> This subroutine is only responsible for setting the second field
  288. *> above.
  289. *> See Lapack Working Note 165 for further details and extra
  290. *> cautions.
  291. *> \endverbatim
  292. *>
  293. *> \param[in] RES
  294. *> \verbatim
  295. *> RES is DOUBLE PRECISION array, dimension (N)
  296. *> Workspace to hold the intermediate residual.
  297. *> \endverbatim
  298. *>
  299. *> \param[in] AYB
  300. *> \verbatim
  301. *> AYB is DOUBLE PRECISION array, dimension (N)
  302. *> Workspace. This can be the same workspace passed for Y_TAIL.
  303. *> \endverbatim
  304. *>
  305. *> \param[in] DY
  306. *> \verbatim
  307. *> DY is DOUBLE PRECISION array, dimension (N)
  308. *> Workspace to hold the intermediate solution.
  309. *> \endverbatim
  310. *>
  311. *> \param[in] Y_TAIL
  312. *> \verbatim
  313. *> Y_TAIL is DOUBLE PRECISION array, dimension (N)
  314. *> Workspace to hold the trailing bits of the intermediate solution.
  315. *> \endverbatim
  316. *>
  317. *> \param[in] RCOND
  318. *> \verbatim
  319. *> RCOND is DOUBLE PRECISION
  320. *> Reciprocal scaled condition number. This is an estimate of the
  321. *> reciprocal Skeel condition number of the matrix A after
  322. *> equilibration (if done). If this is less than the machine
  323. *> precision (in particular, if it is zero), the matrix is singular
  324. *> to working precision. Note that the error may still be small even
  325. *> if this number is very small and the matrix appears ill-
  326. *> conditioned.
  327. *> \endverbatim
  328. *>
  329. *> \param[in] ITHRESH
  330. *> \verbatim
  331. *> ITHRESH is INTEGER
  332. *> The maximum number of residual computations allowed for
  333. *> refinement. The default is 10. For 'aggressive' set to 100 to
  334. *> permit convergence using approximate factorizations or
  335. *> factorizations other than LU. If the factorization uses a
  336. *> technique other than Gaussian elimination, the guarantees in
  337. *> ERR_BNDS_NORM and ERR_BNDS_COMP may no longer be trustworthy.
  338. *> \endverbatim
  339. *>
  340. *> \param[in] RTHRESH
  341. *> \verbatim
  342. *> RTHRESH is DOUBLE PRECISION
  343. *> Determines when to stop refinement if the error estimate stops
  344. *> decreasing. Refinement will stop when the next solution no longer
  345. *> satisfies norm(dx_{i+1}) < RTHRESH * norm(dx_i) where norm(Z) is
  346. *> the infinity norm of Z. RTHRESH satisfies 0 < RTHRESH <= 1. The
  347. *> default value is 0.5. For 'aggressive' set to 0.9 to permit
  348. *> convergence on extremely ill-conditioned matrices. See LAWN 165
  349. *> for more details.
  350. *> \endverbatim
  351. *>
  352. *> \param[in] DZ_UB
  353. *> \verbatim
  354. *> DZ_UB is DOUBLE PRECISION
  355. *> Determines when to start considering componentwise convergence.
  356. *> Componentwise convergence is only considered after each component
  357. *> of the solution Y is stable, which we define as the relative
  358. *> change in each component being less than DZ_UB. The default value
  359. *> is 0.25, requiring the first bit to be stable. See LAWN 165 for
  360. *> more details.
  361. *> \endverbatim
  362. *>
  363. *> \param[in] IGNORE_CWISE
  364. *> \verbatim
  365. *> IGNORE_CWISE is LOGICAL
  366. *> If .TRUE. then ignore componentwise convergence. Default value
  367. *> is .FALSE..
  368. *> \endverbatim
  369. *>
  370. *> \param[out] INFO
  371. *> \verbatim
  372. *> INFO is INTEGER
  373. *> = 0: Successful exit.
  374. *> < 0: if INFO = -i, the ith argument to DLA_SYRFSX_EXTENDED had an illegal
  375. *> value
  376. *> \endverbatim
  377. *
  378. * Authors:
  379. * ========
  380. *
  381. *> \author Univ. of Tennessee
  382. *> \author Univ. of California Berkeley
  383. *> \author Univ. of Colorado Denver
  384. *> \author NAG Ltd.
  385. *
  386. *> \ingroup doubleSYcomputational
  387. *
  388. * =====================================================================
  389. SUBROUTINE DLA_SYRFSX_EXTENDED( PREC_TYPE, UPLO, N, NRHS, A, LDA,
  390. $ AF, LDAF, IPIV, COLEQU, C, B, LDB,
  391. $ Y, LDY, BERR_OUT, N_NORMS,
  392. $ ERR_BNDS_NORM, ERR_BNDS_COMP, RES,
  393. $ AYB, DY, Y_TAIL, RCOND, ITHRESH,
  394. $ RTHRESH, DZ_UB, IGNORE_CWISE,
  395. $ INFO )
  396. *
  397. * -- LAPACK computational routine --
  398. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  399. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  400. *
  401. * .. Scalar Arguments ..
  402. INTEGER INFO, LDA, LDAF, LDB, LDY, N, NRHS, PREC_TYPE,
  403. $ N_NORMS, ITHRESH
  404. CHARACTER UPLO
  405. LOGICAL COLEQU, IGNORE_CWISE
  406. DOUBLE PRECISION RTHRESH, DZ_UB
  407. * ..
  408. * .. Array Arguments ..
  409. INTEGER IPIV( * )
  410. DOUBLE PRECISION A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
  411. $ Y( LDY, * ), RES( * ), DY( * ), Y_TAIL( * )
  412. DOUBLE PRECISION C( * ), AYB( * ), RCOND, BERR_OUT( * ),
  413. $ ERR_BNDS_NORM( NRHS, * ),
  414. $ ERR_BNDS_COMP( NRHS, * )
  415. * ..
  416. *
  417. * =====================================================================
  418. *
  419. * .. Local Scalars ..
  420. INTEGER UPLO2, CNT, I, J, X_STATE, Z_STATE
  421. DOUBLE PRECISION YK, DYK, YMIN, NORMY, NORMX, NORMDX, DXRAT,
  422. $ DZRAT, PREVNORMDX, PREV_DZ_Z, DXRATMAX,
  423. $ DZRATMAX, DX_X, DZ_Z, FINAL_DX_X, FINAL_DZ_Z,
  424. $ EPS, HUGEVAL, INCR_THRESH
  425. LOGICAL INCR_PREC, UPPER
  426. * ..
  427. * .. Parameters ..
  428. INTEGER UNSTABLE_STATE, WORKING_STATE, CONV_STATE,
  429. $ NOPROG_STATE, Y_PREC_STATE, BASE_RESIDUAL,
  430. $ EXTRA_RESIDUAL, EXTRA_Y
  431. PARAMETER ( UNSTABLE_STATE = 0, WORKING_STATE = 1,
  432. $ CONV_STATE = 2, NOPROG_STATE = 3 )
  433. PARAMETER ( BASE_RESIDUAL = 0, EXTRA_RESIDUAL = 1,
  434. $ EXTRA_Y = 2 )
  435. INTEGER FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
  436. INTEGER RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
  437. INTEGER CMP_ERR_I, PIV_GROWTH_I
  438. PARAMETER ( FINAL_NRM_ERR_I = 1, FINAL_CMP_ERR_I = 2,
  439. $ BERR_I = 3 )
  440. PARAMETER ( RCOND_I = 4, NRM_RCOND_I = 5, NRM_ERR_I = 6 )
  441. PARAMETER ( CMP_RCOND_I = 7, CMP_ERR_I = 8,
  442. $ PIV_GROWTH_I = 9 )
  443. INTEGER LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
  444. $ LA_LINRX_CWISE_I
  445. PARAMETER ( LA_LINRX_ITREF_I = 1,
  446. $ LA_LINRX_ITHRESH_I = 2 )
  447. PARAMETER ( LA_LINRX_CWISE_I = 3 )
  448. INTEGER LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
  449. $ LA_LINRX_RCOND_I
  450. PARAMETER ( LA_LINRX_TRUST_I = 1, LA_LINRX_ERR_I = 2 )
  451. PARAMETER ( LA_LINRX_RCOND_I = 3 )
  452. * ..
  453. * .. External Functions ..
  454. LOGICAL LSAME
  455. EXTERNAL ILAUPLO
  456. INTEGER ILAUPLO
  457. * ..
  458. * .. External Subroutines ..
  459. EXTERNAL DAXPY, DCOPY, DSYTRS, DSYMV, BLAS_DSYMV_X,
  460. $ BLAS_DSYMV2_X, DLA_SYAMV, DLA_WWADDW,
  461. $ DLA_LIN_BERR
  462. DOUBLE PRECISION DLAMCH
  463. * ..
  464. * .. Intrinsic Functions ..
  465. INTRINSIC ABS, MAX, MIN
  466. * ..
  467. * .. Executable Statements ..
  468. *
  469. INFO = 0
  470. UPPER = LSAME( UPLO, 'U' )
  471. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  472. INFO = -2
  473. ELSE IF( N.LT.0 ) THEN
  474. INFO = -3
  475. ELSE IF( NRHS.LT.0 ) THEN
  476. INFO = -4
  477. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  478. INFO = -6
  479. ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
  480. INFO = -8
  481. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  482. INFO = -13
  483. ELSE IF( LDY.LT.MAX( 1, N ) ) THEN
  484. INFO = -15
  485. END IF
  486. IF( INFO.NE.0 ) THEN
  487. CALL XERBLA( 'DLA_SYRFSX_EXTENDED', -INFO )
  488. RETURN
  489. END IF
  490. EPS = DLAMCH( 'Epsilon' )
  491. HUGEVAL = DLAMCH( 'Overflow' )
  492. * Force HUGEVAL to Inf
  493. HUGEVAL = HUGEVAL * HUGEVAL
  494. * Using HUGEVAL may lead to spurious underflows.
  495. INCR_THRESH = DBLE( N )*EPS
  496. IF ( LSAME ( UPLO, 'L' ) ) THEN
  497. UPLO2 = ILAUPLO( 'L' )
  498. ELSE
  499. UPLO2 = ILAUPLO( 'U' )
  500. ENDIF
  501. DO J = 1, NRHS
  502. Y_PREC_STATE = EXTRA_RESIDUAL
  503. IF ( Y_PREC_STATE .EQ. EXTRA_Y ) THEN
  504. DO I = 1, N
  505. Y_TAIL( I ) = 0.0D+0
  506. END DO
  507. END IF
  508. DXRAT = 0.0D+0
  509. DXRATMAX = 0.0D+0
  510. DZRAT = 0.0D+0
  511. DZRATMAX = 0.0D+0
  512. FINAL_DX_X = HUGEVAL
  513. FINAL_DZ_Z = HUGEVAL
  514. PREVNORMDX = HUGEVAL
  515. PREV_DZ_Z = HUGEVAL
  516. DZ_Z = HUGEVAL
  517. DX_X = HUGEVAL
  518. X_STATE = WORKING_STATE
  519. Z_STATE = UNSTABLE_STATE
  520. INCR_PREC = .FALSE.
  521. DO CNT = 1, ITHRESH
  522. *
  523. * Compute residual RES = B_s - op(A_s) * Y,
  524. * op(A) = A, A**T, or A**H depending on TRANS (and type).
  525. *
  526. CALL DCOPY( N, B( 1, J ), 1, RES, 1 )
  527. IF (Y_PREC_STATE .EQ. BASE_RESIDUAL) THEN
  528. CALL DSYMV( UPLO, N, -1.0D+0, A, LDA, Y(1,J), 1,
  529. $ 1.0D+0, RES, 1 )
  530. ELSE IF (Y_PREC_STATE .EQ. EXTRA_RESIDUAL) THEN
  531. CALL BLAS_DSYMV_X( UPLO2, N, -1.0D+0, A, LDA,
  532. $ Y( 1, J ), 1, 1.0D+0, RES, 1, PREC_TYPE )
  533. ELSE
  534. CALL BLAS_DSYMV2_X(UPLO2, N, -1.0D+0, A, LDA,
  535. $ Y(1, J), Y_TAIL, 1, 1.0D+0, RES, 1, PREC_TYPE)
  536. END IF
  537. ! XXX: RES is no longer needed.
  538. CALL DCOPY( N, RES, 1, DY, 1 )
  539. CALL DSYTRS( UPLO, N, 1, AF, LDAF, IPIV, DY, N, INFO )
  540. *
  541. * Calculate relative changes DX_X, DZ_Z and ratios DXRAT, DZRAT.
  542. *
  543. NORMX = 0.0D+0
  544. NORMY = 0.0D+0
  545. NORMDX = 0.0D+0
  546. DZ_Z = 0.0D+0
  547. YMIN = HUGEVAL
  548. DO I = 1, N
  549. YK = ABS( Y( I, J ) )
  550. DYK = ABS( DY( I ) )
  551. IF ( YK .NE. 0.0D+0 ) THEN
  552. DZ_Z = MAX( DZ_Z, DYK / YK )
  553. ELSE IF ( DYK .NE. 0.0D+0 ) THEN
  554. DZ_Z = HUGEVAL
  555. END IF
  556. YMIN = MIN( YMIN, YK )
  557. NORMY = MAX( NORMY, YK )
  558. IF ( COLEQU ) THEN
  559. NORMX = MAX( NORMX, YK * C( I ) )
  560. NORMDX = MAX( NORMDX, DYK * C( I ) )
  561. ELSE
  562. NORMX = NORMY
  563. NORMDX = MAX(NORMDX, DYK)
  564. END IF
  565. END DO
  566. IF ( NORMX .NE. 0.0D+0 ) THEN
  567. DX_X = NORMDX / NORMX
  568. ELSE IF ( NORMDX .EQ. 0.0D+0 ) THEN
  569. DX_X = 0.0D+0
  570. ELSE
  571. DX_X = HUGEVAL
  572. END IF
  573. DXRAT = NORMDX / PREVNORMDX
  574. DZRAT = DZ_Z / PREV_DZ_Z
  575. *
  576. * Check termination criteria.
  577. *
  578. IF ( YMIN*RCOND .LT. INCR_THRESH*NORMY
  579. $ .AND. Y_PREC_STATE .LT. EXTRA_Y )
  580. $ INCR_PREC = .TRUE.
  581. IF ( X_STATE .EQ. NOPROG_STATE .AND. DXRAT .LE. RTHRESH )
  582. $ X_STATE = WORKING_STATE
  583. IF ( X_STATE .EQ. WORKING_STATE ) THEN
  584. IF ( DX_X .LE. EPS ) THEN
  585. X_STATE = CONV_STATE
  586. ELSE IF ( DXRAT .GT. RTHRESH ) THEN
  587. IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
  588. INCR_PREC = .TRUE.
  589. ELSE
  590. X_STATE = NOPROG_STATE
  591. END IF
  592. ELSE
  593. IF ( DXRAT .GT. DXRATMAX ) DXRATMAX = DXRAT
  594. END IF
  595. IF ( X_STATE .GT. WORKING_STATE ) FINAL_DX_X = DX_X
  596. END IF
  597. IF ( Z_STATE .EQ. UNSTABLE_STATE .AND. DZ_Z .LE. DZ_UB )
  598. $ Z_STATE = WORKING_STATE
  599. IF ( Z_STATE .EQ. NOPROG_STATE .AND. DZRAT .LE. RTHRESH )
  600. $ Z_STATE = WORKING_STATE
  601. IF ( Z_STATE .EQ. WORKING_STATE ) THEN
  602. IF ( DZ_Z .LE. EPS ) THEN
  603. Z_STATE = CONV_STATE
  604. ELSE IF ( DZ_Z .GT. DZ_UB ) THEN
  605. Z_STATE = UNSTABLE_STATE
  606. DZRATMAX = 0.0D+0
  607. FINAL_DZ_Z = HUGEVAL
  608. ELSE IF ( DZRAT .GT. RTHRESH ) THEN
  609. IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
  610. INCR_PREC = .TRUE.
  611. ELSE
  612. Z_STATE = NOPROG_STATE
  613. END IF
  614. ELSE
  615. IF ( DZRAT .GT. DZRATMAX ) DZRATMAX = DZRAT
  616. END IF
  617. IF ( Z_STATE .GT. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
  618. END IF
  619. IF ( X_STATE.NE.WORKING_STATE.AND.
  620. $ ( IGNORE_CWISE.OR.Z_STATE.NE.WORKING_STATE ) )
  621. $ GOTO 666
  622. IF ( INCR_PREC ) THEN
  623. INCR_PREC = .FALSE.
  624. Y_PREC_STATE = Y_PREC_STATE + 1
  625. DO I = 1, N
  626. Y_TAIL( I ) = 0.0D+0
  627. END DO
  628. END IF
  629. PREVNORMDX = NORMDX
  630. PREV_DZ_Z = DZ_Z
  631. *
  632. * Update solution.
  633. *
  634. IF (Y_PREC_STATE .LT. EXTRA_Y) THEN
  635. CALL DAXPY( N, 1.0D+0, DY, 1, Y(1,J), 1 )
  636. ELSE
  637. CALL DLA_WWADDW( N, Y(1,J), Y_TAIL, DY )
  638. END IF
  639. END DO
  640. * Target of "IF (Z_STOP .AND. X_STOP)". Sun's f77 won't EXIT.
  641. 666 CONTINUE
  642. *
  643. * Set final_* when cnt hits ithresh.
  644. *
  645. IF ( X_STATE .EQ. WORKING_STATE ) FINAL_DX_X = DX_X
  646. IF ( Z_STATE .EQ. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
  647. *
  648. * Compute error bounds.
  649. *
  650. IF ( N_NORMS .GE. 1 ) THEN
  651. ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) =
  652. $ FINAL_DX_X / (1 - DXRATMAX)
  653. END IF
  654. IF ( N_NORMS .GE. 2 ) THEN
  655. ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) =
  656. $ FINAL_DZ_Z / (1 - DZRATMAX)
  657. END IF
  658. *
  659. * Compute componentwise relative backward error from formula
  660. * max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
  661. * where abs(Z) is the componentwise absolute value of the matrix
  662. * or vector Z.
  663. *
  664. * Compute residual RES = B_s - op(A_s) * Y,
  665. * op(A) = A, A**T, or A**H depending on TRANS (and type).
  666. CALL DCOPY( N, B( 1, J ), 1, RES, 1 )
  667. CALL DSYMV( UPLO, N, -1.0D+0, A, LDA, Y(1,J), 1, 1.0D+0, RES,
  668. $ 1 )
  669. DO I = 1, N
  670. AYB( I ) = ABS( B( I, J ) )
  671. END DO
  672. *
  673. * Compute abs(op(A_s))*abs(Y) + abs(B_s).
  674. *
  675. CALL DLA_SYAMV( UPLO2, N, 1.0D+0,
  676. $ A, LDA, Y(1, J), 1, 1.0D+0, AYB, 1 )
  677. CALL DLA_LIN_BERR( N, N, 1, RES, AYB, BERR_OUT( J ) )
  678. *
  679. * End of loop for each RHS.
  680. *
  681. END DO
  682. *
  683. RETURN
  684. *
  685. * End of DLA_SYRFSX_EXTENDED
  686. *
  687. END