You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dgeesx.f 22 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648
  1. *> \brief <b> DGEESX computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors for GE matrices</b>
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DGEESX + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgeesx.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgeesx.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgeesx.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DGEESX( JOBVS, SORT, SELECT, SENSE, N, A, LDA, SDIM,
  22. * WR, WI, VS, LDVS, RCONDE, RCONDV, WORK, LWORK,
  23. * IWORK, LIWORK, BWORK, INFO )
  24. *
  25. * .. Scalar Arguments ..
  26. * CHARACTER JOBVS, SENSE, SORT
  27. * INTEGER INFO, LDA, LDVS, LIWORK, LWORK, N, SDIM
  28. * DOUBLE PRECISION RCONDE, RCONDV
  29. * ..
  30. * .. Array Arguments ..
  31. * LOGICAL BWORK( * )
  32. * INTEGER IWORK( * )
  33. * DOUBLE PRECISION A( LDA, * ), VS( LDVS, * ), WI( * ), WORK( * ),
  34. * $ WR( * )
  35. * ..
  36. * .. Function Arguments ..
  37. * LOGICAL SELECT
  38. * EXTERNAL SELECT
  39. * ..
  40. *
  41. *
  42. *> \par Purpose:
  43. * =============
  44. *>
  45. *> \verbatim
  46. *>
  47. *> DGEESX computes for an N-by-N real nonsymmetric matrix A, the
  48. *> eigenvalues, the real Schur form T, and, optionally, the matrix of
  49. *> Schur vectors Z. This gives the Schur factorization A = Z*T*(Z**T).
  50. *>
  51. *> Optionally, it also orders the eigenvalues on the diagonal of the
  52. *> real Schur form so that selected eigenvalues are at the top left;
  53. *> computes a reciprocal condition number for the average of the
  54. *> selected eigenvalues (RCONDE); and computes a reciprocal condition
  55. *> number for the right invariant subspace corresponding to the
  56. *> selected eigenvalues (RCONDV). The leading columns of Z form an
  57. *> orthonormal basis for this invariant subspace.
  58. *>
  59. *> For further explanation of the reciprocal condition numbers RCONDE
  60. *> and RCONDV, see Section 4.10 of the LAPACK Users' Guide (where
  61. *> these quantities are called s and sep respectively).
  62. *>
  63. *> A real matrix is in real Schur form if it is upper quasi-triangular
  64. *> with 1-by-1 and 2-by-2 blocks. 2-by-2 blocks will be standardized in
  65. *> the form
  66. *> [ a b ]
  67. *> [ c a ]
  68. *>
  69. *> where b*c < 0. The eigenvalues of such a block are a +- sqrt(bc).
  70. *> \endverbatim
  71. *
  72. * Arguments:
  73. * ==========
  74. *
  75. *> \param[in] JOBVS
  76. *> \verbatim
  77. *> JOBVS is CHARACTER*1
  78. *> = 'N': Schur vectors are not computed;
  79. *> = 'V': Schur vectors are computed.
  80. *> \endverbatim
  81. *>
  82. *> \param[in] SORT
  83. *> \verbatim
  84. *> SORT is CHARACTER*1
  85. *> Specifies whether or not to order the eigenvalues on the
  86. *> diagonal of the Schur form.
  87. *> = 'N': Eigenvalues are not ordered;
  88. *> = 'S': Eigenvalues are ordered (see SELECT).
  89. *> \endverbatim
  90. *>
  91. *> \param[in] SELECT
  92. *> \verbatim
  93. *> SELECT is a LOGICAL FUNCTION of two DOUBLE PRECISION arguments
  94. *> SELECT must be declared EXTERNAL in the calling subroutine.
  95. *> If SORT = 'S', SELECT is used to select eigenvalues to sort
  96. *> to the top left of the Schur form.
  97. *> If SORT = 'N', SELECT is not referenced.
  98. *> An eigenvalue WR(j)+sqrt(-1)*WI(j) is selected if
  99. *> SELECT(WR(j),WI(j)) is true; i.e., if either one of a
  100. *> complex conjugate pair of eigenvalues is selected, then both
  101. *> are. Note that a selected complex eigenvalue may no longer
  102. *> satisfy SELECT(WR(j),WI(j)) = .TRUE. after ordering, since
  103. *> ordering may change the value of complex eigenvalues
  104. *> (especially if the eigenvalue is ill-conditioned); in this
  105. *> case INFO may be set to N+3 (see INFO below).
  106. *> \endverbatim
  107. *>
  108. *> \param[in] SENSE
  109. *> \verbatim
  110. *> SENSE is CHARACTER*1
  111. *> Determines which reciprocal condition numbers are computed.
  112. *> = 'N': None are computed;
  113. *> = 'E': Computed for average of selected eigenvalues only;
  114. *> = 'V': Computed for selected right invariant subspace only;
  115. *> = 'B': Computed for both.
  116. *> If SENSE = 'E', 'V' or 'B', SORT must equal 'S'.
  117. *> \endverbatim
  118. *>
  119. *> \param[in] N
  120. *> \verbatim
  121. *> N is INTEGER
  122. *> The order of the matrix A. N >= 0.
  123. *> \endverbatim
  124. *>
  125. *> \param[in,out] A
  126. *> \verbatim
  127. *> A is DOUBLE PRECISION array, dimension (LDA, N)
  128. *> On entry, the N-by-N matrix A.
  129. *> On exit, A is overwritten by its real Schur form T.
  130. *> \endverbatim
  131. *>
  132. *> \param[in] LDA
  133. *> \verbatim
  134. *> LDA is INTEGER
  135. *> The leading dimension of the array A. LDA >= max(1,N).
  136. *> \endverbatim
  137. *>
  138. *> \param[out] SDIM
  139. *> \verbatim
  140. *> SDIM is INTEGER
  141. *> If SORT = 'N', SDIM = 0.
  142. *> If SORT = 'S', SDIM = number of eigenvalues (after sorting)
  143. *> for which SELECT is true. (Complex conjugate
  144. *> pairs for which SELECT is true for either
  145. *> eigenvalue count as 2.)
  146. *> \endverbatim
  147. *>
  148. *> \param[out] WR
  149. *> \verbatim
  150. *> WR is DOUBLE PRECISION array, dimension (N)
  151. *> \endverbatim
  152. *>
  153. *> \param[out] WI
  154. *> \verbatim
  155. *> WI is DOUBLE PRECISION array, dimension (N)
  156. *> WR and WI contain the real and imaginary parts, respectively,
  157. *> of the computed eigenvalues, in the same order that they
  158. *> appear on the diagonal of the output Schur form T. Complex
  159. *> conjugate pairs of eigenvalues appear consecutively with the
  160. *> eigenvalue having the positive imaginary part first.
  161. *> \endverbatim
  162. *>
  163. *> \param[out] VS
  164. *> \verbatim
  165. *> VS is DOUBLE PRECISION array, dimension (LDVS,N)
  166. *> If JOBVS = 'V', VS contains the orthogonal matrix Z of Schur
  167. *> vectors.
  168. *> If JOBVS = 'N', VS is not referenced.
  169. *> \endverbatim
  170. *>
  171. *> \param[in] LDVS
  172. *> \verbatim
  173. *> LDVS is INTEGER
  174. *> The leading dimension of the array VS. LDVS >= 1, and if
  175. *> JOBVS = 'V', LDVS >= N.
  176. *> \endverbatim
  177. *>
  178. *> \param[out] RCONDE
  179. *> \verbatim
  180. *> RCONDE is DOUBLE PRECISION
  181. *> If SENSE = 'E' or 'B', RCONDE contains the reciprocal
  182. *> condition number for the average of the selected eigenvalues.
  183. *> Not referenced if SENSE = 'N' or 'V'.
  184. *> \endverbatim
  185. *>
  186. *> \param[out] RCONDV
  187. *> \verbatim
  188. *> RCONDV is DOUBLE PRECISION
  189. *> If SENSE = 'V' or 'B', RCONDV contains the reciprocal
  190. *> condition number for the selected right invariant subspace.
  191. *> Not referenced if SENSE = 'N' or 'E'.
  192. *> \endverbatim
  193. *>
  194. *> \param[out] WORK
  195. *> \verbatim
  196. *> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  197. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  198. *> \endverbatim
  199. *>
  200. *> \param[in] LWORK
  201. *> \verbatim
  202. *> LWORK is INTEGER
  203. *> The dimension of the array WORK. LWORK >= max(1,3*N).
  204. *> Also, if SENSE = 'E' or 'V' or 'B',
  205. *> LWORK >= N+2*SDIM*(N-SDIM), where SDIM is the number of
  206. *> selected eigenvalues computed by this routine. Note that
  207. *> N+2*SDIM*(N-SDIM) <= N+N*N/2. Note also that an error is only
  208. *> returned if LWORK < max(1,3*N), but if SENSE = 'E' or 'V' or
  209. *> 'B' this may not be large enough.
  210. *> For good performance, LWORK must generally be larger.
  211. *>
  212. *> If LWORK = -1, then a workspace query is assumed; the routine
  213. *> only calculates upper bounds on the optimal sizes of the
  214. *> arrays WORK and IWORK, returns these values as the first
  215. *> entries of the WORK and IWORK arrays, and no error messages
  216. *> related to LWORK or LIWORK are issued by XERBLA.
  217. *> \endverbatim
  218. *>
  219. *> \param[out] IWORK
  220. *> \verbatim
  221. *> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
  222. *> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
  223. *> \endverbatim
  224. *>
  225. *> \param[in] LIWORK
  226. *> \verbatim
  227. *> LIWORK is INTEGER
  228. *> The dimension of the array IWORK.
  229. *> LIWORK >= 1; if SENSE = 'V' or 'B', LIWORK >= SDIM*(N-SDIM).
  230. *> Note that SDIM*(N-SDIM) <= N*N/4. Note also that an error is
  231. *> only returned if LIWORK < 1, but if SENSE = 'V' or 'B' this
  232. *> may not be large enough.
  233. *>
  234. *> If LIWORK = -1, then a workspace query is assumed; the
  235. *> routine only calculates upper bounds on the optimal sizes of
  236. *> the arrays WORK and IWORK, returns these values as the first
  237. *> entries of the WORK and IWORK arrays, and no error messages
  238. *> related to LWORK or LIWORK are issued by XERBLA.
  239. *> \endverbatim
  240. *>
  241. *> \param[out] BWORK
  242. *> \verbatim
  243. *> BWORK is LOGICAL array, dimension (N)
  244. *> Not referenced if SORT = 'N'.
  245. *> \endverbatim
  246. *>
  247. *> \param[out] INFO
  248. *> \verbatim
  249. *> INFO is INTEGER
  250. *> = 0: successful exit
  251. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  252. *> > 0: if INFO = i, and i is
  253. *> <= N: the QR algorithm failed to compute all the
  254. *> eigenvalues; elements 1:ILO-1 and i+1:N of WR and WI
  255. *> contain those eigenvalues which have converged; if
  256. *> JOBVS = 'V', VS contains the transformation which
  257. *> reduces A to its partially converged Schur form.
  258. *> = N+1: the eigenvalues could not be reordered because some
  259. *> eigenvalues were too close to separate (the problem
  260. *> is very ill-conditioned);
  261. *> = N+2: after reordering, roundoff changed values of some
  262. *> complex eigenvalues so that leading eigenvalues in
  263. *> the Schur form no longer satisfy SELECT=.TRUE. This
  264. *> could also be caused by underflow due to scaling.
  265. *> \endverbatim
  266. *
  267. * Authors:
  268. * ========
  269. *
  270. *> \author Univ. of Tennessee
  271. *> \author Univ. of California Berkeley
  272. *> \author Univ. of Colorado Denver
  273. *> \author NAG Ltd.
  274. *
  275. *> \ingroup doubleGEeigen
  276. *
  277. * =====================================================================
  278. SUBROUTINE DGEESX( JOBVS, SORT, SELECT, SENSE, N, A, LDA, SDIM,
  279. $ WR, WI, VS, LDVS, RCONDE, RCONDV, WORK, LWORK,
  280. $ IWORK, LIWORK, BWORK, INFO )
  281. *
  282. * -- LAPACK driver routine --
  283. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  284. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  285. *
  286. * .. Scalar Arguments ..
  287. CHARACTER JOBVS, SENSE, SORT
  288. INTEGER INFO, LDA, LDVS, LIWORK, LWORK, N, SDIM
  289. DOUBLE PRECISION RCONDE, RCONDV
  290. * ..
  291. * .. Array Arguments ..
  292. LOGICAL BWORK( * )
  293. INTEGER IWORK( * )
  294. DOUBLE PRECISION A( LDA, * ), VS( LDVS, * ), WI( * ), WORK( * ),
  295. $ WR( * )
  296. * ..
  297. * .. Function Arguments ..
  298. LOGICAL SELECT
  299. EXTERNAL SELECT
  300. * ..
  301. *
  302. * =====================================================================
  303. *
  304. * .. Parameters ..
  305. DOUBLE PRECISION ZERO, ONE
  306. PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
  307. * ..
  308. * .. Local Scalars ..
  309. LOGICAL CURSL, LASTSL, LQUERY, LST2SL, SCALEA, WANTSB,
  310. $ WANTSE, WANTSN, WANTST, WANTSV, WANTVS
  311. INTEGER HSWORK, I, I1, I2, IBAL, ICOND, IERR, IEVAL,
  312. $ IHI, ILO, INXT, IP, ITAU, IWRK, LIWRK, LWRK,
  313. $ MAXWRK, MINWRK
  314. DOUBLE PRECISION ANRM, BIGNUM, CSCALE, EPS, SMLNUM
  315. * ..
  316. * .. Local Arrays ..
  317. DOUBLE PRECISION DUM( 1 )
  318. * ..
  319. * .. External Subroutines ..
  320. EXTERNAL DCOPY, DGEBAK, DGEBAL, DGEHRD, DHSEQR, DLACPY,
  321. $ DLASCL, DORGHR, DSWAP, DTRSEN, XERBLA
  322. * ..
  323. * .. External Functions ..
  324. LOGICAL LSAME
  325. INTEGER ILAENV
  326. DOUBLE PRECISION DLAMCH, DLANGE
  327. EXTERNAL LSAME, ILAENV, DLABAD, DLAMCH, DLANGE
  328. * ..
  329. * .. Intrinsic Functions ..
  330. INTRINSIC MAX, SQRT
  331. * ..
  332. * .. Executable Statements ..
  333. *
  334. * Test the input arguments
  335. *
  336. INFO = 0
  337. WANTVS = LSAME( JOBVS, 'V' )
  338. WANTST = LSAME( SORT, 'S' )
  339. WANTSN = LSAME( SENSE, 'N' )
  340. WANTSE = LSAME( SENSE, 'E' )
  341. WANTSV = LSAME( SENSE, 'V' )
  342. WANTSB = LSAME( SENSE, 'B' )
  343. LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
  344. *
  345. IF( ( .NOT.WANTVS ) .AND. ( .NOT.LSAME( JOBVS, 'N' ) ) ) THEN
  346. INFO = -1
  347. ELSE IF( ( .NOT.WANTST ) .AND. ( .NOT.LSAME( SORT, 'N' ) ) ) THEN
  348. INFO = -2
  349. ELSE IF( .NOT.( WANTSN .OR. WANTSE .OR. WANTSV .OR. WANTSB ) .OR.
  350. $ ( .NOT.WANTST .AND. .NOT.WANTSN ) ) THEN
  351. INFO = -4
  352. ELSE IF( N.LT.0 ) THEN
  353. INFO = -5
  354. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  355. INFO = -7
  356. ELSE IF( LDVS.LT.1 .OR. ( WANTVS .AND. LDVS.LT.N ) ) THEN
  357. INFO = -12
  358. END IF
  359. *
  360. * Compute workspace
  361. * (Note: Comments in the code beginning "RWorkspace:" describe the
  362. * minimal amount of real workspace needed at that point in the
  363. * code, as well as the preferred amount for good performance.
  364. * IWorkspace refers to integer workspace.
  365. * NB refers to the optimal block size for the immediately
  366. * following subroutine, as returned by ILAENV.
  367. * HSWORK refers to the workspace preferred by DHSEQR, as
  368. * calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
  369. * the worst case.
  370. * If SENSE = 'E', 'V' or 'B', then the amount of workspace needed
  371. * depends on SDIM, which is computed by the routine DTRSEN later
  372. * in the code.)
  373. *
  374. IF( INFO.EQ.0 ) THEN
  375. LIWRK = 1
  376. IF( N.EQ.0 ) THEN
  377. MINWRK = 1
  378. LWRK = 1
  379. ELSE
  380. MAXWRK = 2*N + N*ILAENV( 1, 'DGEHRD', ' ', N, 1, N, 0 )
  381. MINWRK = 3*N
  382. *
  383. CALL DHSEQR( 'S', JOBVS, N, 1, N, A, LDA, WR, WI, VS, LDVS,
  384. $ WORK, -1, IEVAL )
  385. HSWORK = INT( WORK( 1 ) )
  386. *
  387. IF( .NOT.WANTVS ) THEN
  388. MAXWRK = MAX( MAXWRK, N + HSWORK )
  389. ELSE
  390. MAXWRK = MAX( MAXWRK, 2*N + ( N - 1 )*ILAENV( 1,
  391. $ 'DORGHR', ' ', N, 1, N, -1 ) )
  392. MAXWRK = MAX( MAXWRK, N + HSWORK )
  393. END IF
  394. LWRK = MAXWRK
  395. IF( .NOT.WANTSN )
  396. $ LWRK = MAX( LWRK, N + ( N*N )/2 )
  397. IF( WANTSV .OR. WANTSB )
  398. $ LIWRK = ( N*N )/4
  399. END IF
  400. IWORK( 1 ) = LIWRK
  401. WORK( 1 ) = LWRK
  402. *
  403. IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
  404. INFO = -16
  405. ELSE IF( LIWORK.LT.1 .AND. .NOT.LQUERY ) THEN
  406. INFO = -18
  407. END IF
  408. END IF
  409. *
  410. IF( INFO.NE.0 ) THEN
  411. CALL XERBLA( 'DGEESX', -INFO )
  412. RETURN
  413. ELSE IF( LQUERY ) THEN
  414. RETURN
  415. END IF
  416. *
  417. * Quick return if possible
  418. *
  419. IF( N.EQ.0 ) THEN
  420. SDIM = 0
  421. RETURN
  422. END IF
  423. *
  424. * Get machine constants
  425. *
  426. EPS = DLAMCH( 'P' )
  427. SMLNUM = DLAMCH( 'S' )
  428. BIGNUM = ONE / SMLNUM
  429. CALL DLABAD( SMLNUM, BIGNUM )
  430. SMLNUM = SQRT( SMLNUM ) / EPS
  431. BIGNUM = ONE / SMLNUM
  432. *
  433. * Scale A if max element outside range [SMLNUM,BIGNUM]
  434. *
  435. ANRM = DLANGE( 'M', N, N, A, LDA, DUM )
  436. SCALEA = .FALSE.
  437. IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  438. SCALEA = .TRUE.
  439. CSCALE = SMLNUM
  440. ELSE IF( ANRM.GT.BIGNUM ) THEN
  441. SCALEA = .TRUE.
  442. CSCALE = BIGNUM
  443. END IF
  444. IF( SCALEA )
  445. $ CALL DLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR )
  446. *
  447. * Permute the matrix to make it more nearly triangular
  448. * (RWorkspace: need N)
  449. *
  450. IBAL = 1
  451. CALL DGEBAL( 'P', N, A, LDA, ILO, IHI, WORK( IBAL ), IERR )
  452. *
  453. * Reduce to upper Hessenberg form
  454. * (RWorkspace: need 3*N, prefer 2*N+N*NB)
  455. *
  456. ITAU = N + IBAL
  457. IWRK = N + ITAU
  458. CALL DGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ),
  459. $ LWORK-IWRK+1, IERR )
  460. *
  461. IF( WANTVS ) THEN
  462. *
  463. * Copy Householder vectors to VS
  464. *
  465. CALL DLACPY( 'L', N, N, A, LDA, VS, LDVS )
  466. *
  467. * Generate orthogonal matrix in VS
  468. * (RWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB)
  469. *
  470. CALL DORGHR( N, ILO, IHI, VS, LDVS, WORK( ITAU ), WORK( IWRK ),
  471. $ LWORK-IWRK+1, IERR )
  472. END IF
  473. *
  474. SDIM = 0
  475. *
  476. * Perform QR iteration, accumulating Schur vectors in VS if desired
  477. * (RWorkspace: need N+1, prefer N+HSWORK (see comments) )
  478. *
  479. IWRK = ITAU
  480. CALL DHSEQR( 'S', JOBVS, N, ILO, IHI, A, LDA, WR, WI, VS, LDVS,
  481. $ WORK( IWRK ), LWORK-IWRK+1, IEVAL )
  482. IF( IEVAL.GT.0 )
  483. $ INFO = IEVAL
  484. *
  485. * Sort eigenvalues if desired
  486. *
  487. IF( WANTST .AND. INFO.EQ.0 ) THEN
  488. IF( SCALEA ) THEN
  489. CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N, 1, WR, N, IERR )
  490. CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N, 1, WI, N, IERR )
  491. END IF
  492. DO 10 I = 1, N
  493. BWORK( I ) = SELECT( WR( I ), WI( I ) )
  494. 10 CONTINUE
  495. *
  496. * Reorder eigenvalues, transform Schur vectors, and compute
  497. * reciprocal condition numbers
  498. * (RWorkspace: if SENSE is not 'N', need N+2*SDIM*(N-SDIM)
  499. * otherwise, need N )
  500. * (IWorkspace: if SENSE is 'V' or 'B', need SDIM*(N-SDIM)
  501. * otherwise, need 0 )
  502. *
  503. CALL DTRSEN( SENSE, JOBVS, BWORK, N, A, LDA, VS, LDVS, WR, WI,
  504. $ SDIM, RCONDE, RCONDV, WORK( IWRK ), LWORK-IWRK+1,
  505. $ IWORK, LIWORK, ICOND )
  506. IF( .NOT.WANTSN )
  507. $ MAXWRK = MAX( MAXWRK, N+2*SDIM*( N-SDIM ) )
  508. IF( ICOND.EQ.-15 ) THEN
  509. *
  510. * Not enough real workspace
  511. *
  512. INFO = -16
  513. ELSE IF( ICOND.EQ.-17 ) THEN
  514. *
  515. * Not enough integer workspace
  516. *
  517. INFO = -18
  518. ELSE IF( ICOND.GT.0 ) THEN
  519. *
  520. * DTRSEN failed to reorder or to restore standard Schur form
  521. *
  522. INFO = ICOND + N
  523. END IF
  524. END IF
  525. *
  526. IF( WANTVS ) THEN
  527. *
  528. * Undo balancing
  529. * (RWorkspace: need N)
  530. *
  531. CALL DGEBAK( 'P', 'R', N, ILO, IHI, WORK( IBAL ), N, VS, LDVS,
  532. $ IERR )
  533. END IF
  534. *
  535. IF( SCALEA ) THEN
  536. *
  537. * Undo scaling for the Schur form of A
  538. *
  539. CALL DLASCL( 'H', 0, 0, CSCALE, ANRM, N, N, A, LDA, IERR )
  540. CALL DCOPY( N, A, LDA+1, WR, 1 )
  541. IF( ( WANTSV .OR. WANTSB ) .AND. INFO.EQ.0 ) THEN
  542. DUM( 1 ) = RCONDV
  543. CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, 1, 1, DUM, 1, IERR )
  544. RCONDV = DUM( 1 )
  545. END IF
  546. IF( CSCALE.EQ.SMLNUM ) THEN
  547. *
  548. * If scaling back towards underflow, adjust WI if an
  549. * offdiagonal element of a 2-by-2 block in the Schur form
  550. * underflows.
  551. *
  552. IF( IEVAL.GT.0 ) THEN
  553. I1 = IEVAL + 1
  554. I2 = IHI - 1
  555. CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, WI, N,
  556. $ IERR )
  557. ELSE IF( WANTST ) THEN
  558. I1 = 1
  559. I2 = N - 1
  560. ELSE
  561. I1 = ILO
  562. I2 = IHI - 1
  563. END IF
  564. INXT = I1 - 1
  565. DO 20 I = I1, I2
  566. IF( I.LT.INXT )
  567. $ GO TO 20
  568. IF( WI( I ).EQ.ZERO ) THEN
  569. INXT = I + 1
  570. ELSE
  571. IF( A( I+1, I ).EQ.ZERO ) THEN
  572. WI( I ) = ZERO
  573. WI( I+1 ) = ZERO
  574. ELSE IF( A( I+1, I ).NE.ZERO .AND. A( I, I+1 ).EQ.
  575. $ ZERO ) THEN
  576. WI( I ) = ZERO
  577. WI( I+1 ) = ZERO
  578. IF( I.GT.1 )
  579. $ CALL DSWAP( I-1, A( 1, I ), 1, A( 1, I+1 ), 1 )
  580. IF( N.GT.I+1 )
  581. $ CALL DSWAP( N-I-1, A( I, I+2 ), LDA,
  582. $ A( I+1, I+2 ), LDA )
  583. IF( WANTVS ) THEN
  584. CALL DSWAP( N, VS( 1, I ), 1, VS( 1, I+1 ), 1 )
  585. END IF
  586. A( I, I+1 ) = A( I+1, I )
  587. A( I+1, I ) = ZERO
  588. END IF
  589. INXT = I + 2
  590. END IF
  591. 20 CONTINUE
  592. END IF
  593. CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N-IEVAL, 1,
  594. $ WI( IEVAL+1 ), MAX( N-IEVAL, 1 ), IERR )
  595. END IF
  596. *
  597. IF( WANTST .AND. INFO.EQ.0 ) THEN
  598. *
  599. * Check if reordering successful
  600. *
  601. LASTSL = .TRUE.
  602. LST2SL = .TRUE.
  603. SDIM = 0
  604. IP = 0
  605. DO 30 I = 1, N
  606. CURSL = SELECT( WR( I ), WI( I ) )
  607. IF( WI( I ).EQ.ZERO ) THEN
  608. IF( CURSL )
  609. $ SDIM = SDIM + 1
  610. IP = 0
  611. IF( CURSL .AND. .NOT.LASTSL )
  612. $ INFO = N + 2
  613. ELSE
  614. IF( IP.EQ.1 ) THEN
  615. *
  616. * Last eigenvalue of conjugate pair
  617. *
  618. CURSL = CURSL .OR. LASTSL
  619. LASTSL = CURSL
  620. IF( CURSL )
  621. $ SDIM = SDIM + 2
  622. IP = -1
  623. IF( CURSL .AND. .NOT.LST2SL )
  624. $ INFO = N + 2
  625. ELSE
  626. *
  627. * First eigenvalue of conjugate pair
  628. *
  629. IP = 1
  630. END IF
  631. END IF
  632. LST2SL = LASTSL
  633. LASTSL = CURSL
  634. 30 CONTINUE
  635. END IF
  636. *
  637. WORK( 1 ) = MAXWRK
  638. IF( WANTSV .OR. WANTSB ) THEN
  639. IWORK( 1 ) = MAX( 1, SDIM*( N-SDIM ) )
  640. ELSE
  641. IWORK( 1 ) = 1
  642. END IF
  643. *
  644. RETURN
  645. *
  646. * End of DGEESX
  647. *
  648. END