You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cunmr3.f 8.0 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302
  1. *> \brief \b CUNMR3 multiplies a general matrix by the unitary matrix from a RZ factorization determined by ctzrzf (unblocked algorithm).
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CUNMR3 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cunmr3.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cunmr3.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cunmr3.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CUNMR3( SIDE, TRANS, M, N, K, L, A, LDA, TAU, C, LDC,
  22. * WORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER SIDE, TRANS
  26. * INTEGER INFO, K, L, LDA, LDC, M, N
  27. * ..
  28. * .. Array Arguments ..
  29. * COMPLEX A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> CUNMR3 overwrites the general complex m by n matrix C with
  39. *>
  40. *> Q * C if SIDE = 'L' and TRANS = 'N', or
  41. *>
  42. *> Q**H* C if SIDE = 'L' and TRANS = 'C', or
  43. *>
  44. *> C * Q if SIDE = 'R' and TRANS = 'N', or
  45. *>
  46. *> C * Q**H if SIDE = 'R' and TRANS = 'C',
  47. *>
  48. *> where Q is a complex unitary matrix defined as the product of k
  49. *> elementary reflectors
  50. *>
  51. *> Q = H(1) H(2) . . . H(k)
  52. *>
  53. *> as returned by CTZRZF. Q is of order m if SIDE = 'L' and of order n
  54. *> if SIDE = 'R'.
  55. *> \endverbatim
  56. *
  57. * Arguments:
  58. * ==========
  59. *
  60. *> \param[in] SIDE
  61. *> \verbatim
  62. *> SIDE is CHARACTER*1
  63. *> = 'L': apply Q or Q**H from the Left
  64. *> = 'R': apply Q or Q**H from the Right
  65. *> \endverbatim
  66. *>
  67. *> \param[in] TRANS
  68. *> \verbatim
  69. *> TRANS is CHARACTER*1
  70. *> = 'N': apply Q (No transpose)
  71. *> = 'C': apply Q**H (Conjugate transpose)
  72. *> \endverbatim
  73. *>
  74. *> \param[in] M
  75. *> \verbatim
  76. *> M is INTEGER
  77. *> The number of rows of the matrix C. M >= 0.
  78. *> \endverbatim
  79. *>
  80. *> \param[in] N
  81. *> \verbatim
  82. *> N is INTEGER
  83. *> The number of columns of the matrix C. N >= 0.
  84. *> \endverbatim
  85. *>
  86. *> \param[in] K
  87. *> \verbatim
  88. *> K is INTEGER
  89. *> The number of elementary reflectors whose product defines
  90. *> the matrix Q.
  91. *> If SIDE = 'L', M >= K >= 0;
  92. *> if SIDE = 'R', N >= K >= 0.
  93. *> \endverbatim
  94. *>
  95. *> \param[in] L
  96. *> \verbatim
  97. *> L is INTEGER
  98. *> The number of columns of the matrix A containing
  99. *> the meaningful part of the Householder reflectors.
  100. *> If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.
  101. *> \endverbatim
  102. *>
  103. *> \param[in] A
  104. *> \verbatim
  105. *> A is COMPLEX array, dimension
  106. *> (LDA,M) if SIDE = 'L',
  107. *> (LDA,N) if SIDE = 'R'
  108. *> The i-th row must contain the vector which defines the
  109. *> elementary reflector H(i), for i = 1,2,...,k, as returned by
  110. *> CTZRZF in the last k rows of its array argument A.
  111. *> A is modified by the routine but restored on exit.
  112. *> \endverbatim
  113. *>
  114. *> \param[in] LDA
  115. *> \verbatim
  116. *> LDA is INTEGER
  117. *> The leading dimension of the array A. LDA >= max(1,K).
  118. *> \endverbatim
  119. *>
  120. *> \param[in] TAU
  121. *> \verbatim
  122. *> TAU is COMPLEX array, dimension (K)
  123. *> TAU(i) must contain the scalar factor of the elementary
  124. *> reflector H(i), as returned by CTZRZF.
  125. *> \endverbatim
  126. *>
  127. *> \param[in,out] C
  128. *> \verbatim
  129. *> C is COMPLEX array, dimension (LDC,N)
  130. *> On entry, the m-by-n matrix C.
  131. *> On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
  132. *> \endverbatim
  133. *>
  134. *> \param[in] LDC
  135. *> \verbatim
  136. *> LDC is INTEGER
  137. *> The leading dimension of the array C. LDC >= max(1,M).
  138. *> \endverbatim
  139. *>
  140. *> \param[out] WORK
  141. *> \verbatim
  142. *> WORK is COMPLEX array, dimension
  143. *> (N) if SIDE = 'L',
  144. *> (M) if SIDE = 'R'
  145. *> \endverbatim
  146. *>
  147. *> \param[out] INFO
  148. *> \verbatim
  149. *> INFO is INTEGER
  150. *> = 0: successful exit
  151. *> < 0: if INFO = -i, the i-th argument had an illegal value
  152. *> \endverbatim
  153. *
  154. * Authors:
  155. * ========
  156. *
  157. *> \author Univ. of Tennessee
  158. *> \author Univ. of California Berkeley
  159. *> \author Univ. of Colorado Denver
  160. *> \author NAG Ltd.
  161. *
  162. *> \ingroup complexOTHERcomputational
  163. *
  164. *> \par Contributors:
  165. * ==================
  166. *>
  167. *> A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
  168. *
  169. *> \par Further Details:
  170. * =====================
  171. *>
  172. *> \verbatim
  173. *> \endverbatim
  174. *>
  175. * =====================================================================
  176. SUBROUTINE CUNMR3( SIDE, TRANS, M, N, K, L, A, LDA, TAU, C, LDC,
  177. $ WORK, INFO )
  178. *
  179. * -- LAPACK computational routine --
  180. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  181. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  182. *
  183. * .. Scalar Arguments ..
  184. CHARACTER SIDE, TRANS
  185. INTEGER INFO, K, L, LDA, LDC, M, N
  186. * ..
  187. * .. Array Arguments ..
  188. COMPLEX A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
  189. * ..
  190. *
  191. * =====================================================================
  192. *
  193. * .. Local Scalars ..
  194. LOGICAL LEFT, NOTRAN
  195. INTEGER I, I1, I2, I3, IC, JA, JC, MI, NI, NQ
  196. COMPLEX TAUI
  197. * ..
  198. * .. External Functions ..
  199. LOGICAL LSAME
  200. EXTERNAL LSAME
  201. * ..
  202. * .. External Subroutines ..
  203. EXTERNAL CLARZ, XERBLA
  204. * ..
  205. * .. Intrinsic Functions ..
  206. INTRINSIC CONJG, MAX
  207. * ..
  208. * .. Executable Statements ..
  209. *
  210. * Test the input arguments
  211. *
  212. INFO = 0
  213. LEFT = LSAME( SIDE, 'L' )
  214. NOTRAN = LSAME( TRANS, 'N' )
  215. *
  216. * NQ is the order of Q
  217. *
  218. IF( LEFT ) THEN
  219. NQ = M
  220. ELSE
  221. NQ = N
  222. END IF
  223. IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
  224. INFO = -1
  225. ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN
  226. INFO = -2
  227. ELSE IF( M.LT.0 ) THEN
  228. INFO = -3
  229. ELSE IF( N.LT.0 ) THEN
  230. INFO = -4
  231. ELSE IF( K.LT.0 .OR. K.GT.NQ ) THEN
  232. INFO = -5
  233. ELSE IF( L.LT.0 .OR. ( LEFT .AND. ( L.GT.M ) ) .OR.
  234. $ ( .NOT.LEFT .AND. ( L.GT.N ) ) ) THEN
  235. INFO = -6
  236. ELSE IF( LDA.LT.MAX( 1, K ) ) THEN
  237. INFO = -8
  238. ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
  239. INFO = -11
  240. END IF
  241. IF( INFO.NE.0 ) THEN
  242. CALL XERBLA( 'CUNMR3', -INFO )
  243. RETURN
  244. END IF
  245. *
  246. * Quick return if possible
  247. *
  248. IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 )
  249. $ RETURN
  250. *
  251. IF( ( LEFT .AND. .NOT.NOTRAN .OR. .NOT.LEFT .AND. NOTRAN ) ) THEN
  252. I1 = 1
  253. I2 = K
  254. I3 = 1
  255. ELSE
  256. I1 = K
  257. I2 = 1
  258. I3 = -1
  259. END IF
  260. *
  261. IF( LEFT ) THEN
  262. NI = N
  263. JA = M - L + 1
  264. JC = 1
  265. ELSE
  266. MI = M
  267. JA = N - L + 1
  268. IC = 1
  269. END IF
  270. *
  271. DO 10 I = I1, I2, I3
  272. IF( LEFT ) THEN
  273. *
  274. * H(i) or H(i)**H is applied to C(i:m,1:n)
  275. *
  276. MI = M - I + 1
  277. IC = I
  278. ELSE
  279. *
  280. * H(i) or H(i)**H is applied to C(1:m,i:n)
  281. *
  282. NI = N - I + 1
  283. JC = I
  284. END IF
  285. *
  286. * Apply H(i) or H(i)**H
  287. *
  288. IF( NOTRAN ) THEN
  289. TAUI = TAU( I )
  290. ELSE
  291. TAUI = CONJG( TAU( I ) )
  292. END IF
  293. CALL CLARZ( SIDE, MI, NI, L, A( I, JA ), LDA, TAUI,
  294. $ C( IC, JC ), LDC, WORK )
  295. *
  296. 10 CONTINUE
  297. *
  298. RETURN
  299. *
  300. * End of CUNMR3
  301. *
  302. END