You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cgtts2.f 10 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346
  1. *> \brief \b CGTTS2 solves a system of linear equations with a tridiagonal matrix using the LU factorization computed by sgttrf.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CGTTS2 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgtts2.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgtts2.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgtts2.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CGTTS2( ITRANS, N, NRHS, DL, D, DU, DU2, IPIV, B, LDB )
  22. *
  23. * .. Scalar Arguments ..
  24. * INTEGER ITRANS, LDB, N, NRHS
  25. * ..
  26. * .. Array Arguments ..
  27. * INTEGER IPIV( * )
  28. * COMPLEX B( LDB, * ), D( * ), DL( * ), DU( * ), DU2( * )
  29. * ..
  30. *
  31. *
  32. *> \par Purpose:
  33. * =============
  34. *>
  35. *> \verbatim
  36. *>
  37. *> CGTTS2 solves one of the systems of equations
  38. *> A * X = B, A**T * X = B, or A**H * X = B,
  39. *> with a tridiagonal matrix A using the LU factorization computed
  40. *> by CGTTRF.
  41. *> \endverbatim
  42. *
  43. * Arguments:
  44. * ==========
  45. *
  46. *> \param[in] ITRANS
  47. *> \verbatim
  48. *> ITRANS is INTEGER
  49. *> Specifies the form of the system of equations.
  50. *> = 0: A * X = B (No transpose)
  51. *> = 1: A**T * X = B (Transpose)
  52. *> = 2: A**H * X = B (Conjugate transpose)
  53. *> \endverbatim
  54. *>
  55. *> \param[in] N
  56. *> \verbatim
  57. *> N is INTEGER
  58. *> The order of the matrix A.
  59. *> \endverbatim
  60. *>
  61. *> \param[in] NRHS
  62. *> \verbatim
  63. *> NRHS is INTEGER
  64. *> The number of right hand sides, i.e., the number of columns
  65. *> of the matrix B. NRHS >= 0.
  66. *> \endverbatim
  67. *>
  68. *> \param[in] DL
  69. *> \verbatim
  70. *> DL is COMPLEX array, dimension (N-1)
  71. *> The (n-1) multipliers that define the matrix L from the
  72. *> LU factorization of A.
  73. *> \endverbatim
  74. *>
  75. *> \param[in] D
  76. *> \verbatim
  77. *> D is COMPLEX array, dimension (N)
  78. *> The n diagonal elements of the upper triangular matrix U from
  79. *> the LU factorization of A.
  80. *> \endverbatim
  81. *>
  82. *> \param[in] DU
  83. *> \verbatim
  84. *> DU is COMPLEX array, dimension (N-1)
  85. *> The (n-1) elements of the first super-diagonal of U.
  86. *> \endverbatim
  87. *>
  88. *> \param[in] DU2
  89. *> \verbatim
  90. *> DU2 is COMPLEX array, dimension (N-2)
  91. *> The (n-2) elements of the second super-diagonal of U.
  92. *> \endverbatim
  93. *>
  94. *> \param[in] IPIV
  95. *> \verbatim
  96. *> IPIV is INTEGER array, dimension (N)
  97. *> The pivot indices; for 1 <= i <= n, row i of the matrix was
  98. *> interchanged with row IPIV(i). IPIV(i) will always be either
  99. *> i or i+1; IPIV(i) = i indicates a row interchange was not
  100. *> required.
  101. *> \endverbatim
  102. *>
  103. *> \param[in,out] B
  104. *> \verbatim
  105. *> B is COMPLEX array, dimension (LDB,NRHS)
  106. *> On entry, the matrix of right hand side vectors B.
  107. *> On exit, B is overwritten by the solution vectors X.
  108. *> \endverbatim
  109. *>
  110. *> \param[in] LDB
  111. *> \verbatim
  112. *> LDB is INTEGER
  113. *> The leading dimension of the array B. LDB >= max(1,N).
  114. *> \endverbatim
  115. *
  116. * Authors:
  117. * ========
  118. *
  119. *> \author Univ. of Tennessee
  120. *> \author Univ. of California Berkeley
  121. *> \author Univ. of Colorado Denver
  122. *> \author NAG Ltd.
  123. *
  124. *> \ingroup complexGTcomputational
  125. *
  126. * =====================================================================
  127. SUBROUTINE CGTTS2( ITRANS, N, NRHS, DL, D, DU, DU2, IPIV, B, LDB )
  128. *
  129. * -- LAPACK computational routine --
  130. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  131. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  132. *
  133. * .. Scalar Arguments ..
  134. INTEGER ITRANS, LDB, N, NRHS
  135. * ..
  136. * .. Array Arguments ..
  137. INTEGER IPIV( * )
  138. COMPLEX B( LDB, * ), D( * ), DL( * ), DU( * ), DU2( * )
  139. * ..
  140. *
  141. * =====================================================================
  142. *
  143. * .. Local Scalars ..
  144. INTEGER I, J
  145. COMPLEX TEMP
  146. * ..
  147. * .. Intrinsic Functions ..
  148. INTRINSIC CONJG
  149. * ..
  150. * .. Executable Statements ..
  151. *
  152. * Quick return if possible
  153. *
  154. IF( N.EQ.0 .OR. NRHS.EQ.0 )
  155. $ RETURN
  156. *
  157. IF( ITRANS.EQ.0 ) THEN
  158. *
  159. * Solve A*X = B using the LU factorization of A,
  160. * overwriting each right hand side vector with its solution.
  161. *
  162. IF( NRHS.LE.1 ) THEN
  163. J = 1
  164. 10 CONTINUE
  165. *
  166. * Solve L*x = b.
  167. *
  168. DO 20 I = 1, N - 1
  169. IF( IPIV( I ).EQ.I ) THEN
  170. B( I+1, J ) = B( I+1, J ) - DL( I )*B( I, J )
  171. ELSE
  172. TEMP = B( I, J )
  173. B( I, J ) = B( I+1, J )
  174. B( I+1, J ) = TEMP - DL( I )*B( I, J )
  175. END IF
  176. 20 CONTINUE
  177. *
  178. * Solve U*x = b.
  179. *
  180. B( N, J ) = B( N, J ) / D( N )
  181. IF( N.GT.1 )
  182. $ B( N-1, J ) = ( B( N-1, J )-DU( N-1 )*B( N, J ) ) /
  183. $ D( N-1 )
  184. DO 30 I = N - 2, 1, -1
  185. B( I, J ) = ( B( I, J )-DU( I )*B( I+1, J )-DU2( I )*
  186. $ B( I+2, J ) ) / D( I )
  187. 30 CONTINUE
  188. IF( J.LT.NRHS ) THEN
  189. J = J + 1
  190. GO TO 10
  191. END IF
  192. ELSE
  193. DO 60 J = 1, NRHS
  194. *
  195. * Solve L*x = b.
  196. *
  197. DO 40 I = 1, N - 1
  198. IF( IPIV( I ).EQ.I ) THEN
  199. B( I+1, J ) = B( I+1, J ) - DL( I )*B( I, J )
  200. ELSE
  201. TEMP = B( I, J )
  202. B( I, J ) = B( I+1, J )
  203. B( I+1, J ) = TEMP - DL( I )*B( I, J )
  204. END IF
  205. 40 CONTINUE
  206. *
  207. * Solve U*x = b.
  208. *
  209. B( N, J ) = B( N, J ) / D( N )
  210. IF( N.GT.1 )
  211. $ B( N-1, J ) = ( B( N-1, J )-DU( N-1 )*B( N, J ) ) /
  212. $ D( N-1 )
  213. DO 50 I = N - 2, 1, -1
  214. B( I, J ) = ( B( I, J )-DU( I )*B( I+1, J )-DU2( I )*
  215. $ B( I+2, J ) ) / D( I )
  216. 50 CONTINUE
  217. 60 CONTINUE
  218. END IF
  219. ELSE IF( ITRANS.EQ.1 ) THEN
  220. *
  221. * Solve A**T * X = B.
  222. *
  223. IF( NRHS.LE.1 ) THEN
  224. J = 1
  225. 70 CONTINUE
  226. *
  227. * Solve U**T * x = b.
  228. *
  229. B( 1, J ) = B( 1, J ) / D( 1 )
  230. IF( N.GT.1 )
  231. $ B( 2, J ) = ( B( 2, J )-DU( 1 )*B( 1, J ) ) / D( 2 )
  232. DO 80 I = 3, N
  233. B( I, J ) = ( B( I, J )-DU( I-1 )*B( I-1, J )-DU2( I-2 )*
  234. $ B( I-2, J ) ) / D( I )
  235. 80 CONTINUE
  236. *
  237. * Solve L**T * x = b.
  238. *
  239. DO 90 I = N - 1, 1, -1
  240. IF( IPIV( I ).EQ.I ) THEN
  241. B( I, J ) = B( I, J ) - DL( I )*B( I+1, J )
  242. ELSE
  243. TEMP = B( I+1, J )
  244. B( I+1, J ) = B( I, J ) - DL( I )*TEMP
  245. B( I, J ) = TEMP
  246. END IF
  247. 90 CONTINUE
  248. IF( J.LT.NRHS ) THEN
  249. J = J + 1
  250. GO TO 70
  251. END IF
  252. ELSE
  253. DO 120 J = 1, NRHS
  254. *
  255. * Solve U**T * x = b.
  256. *
  257. B( 1, J ) = B( 1, J ) / D( 1 )
  258. IF( N.GT.1 )
  259. $ B( 2, J ) = ( B( 2, J )-DU( 1 )*B( 1, J ) ) / D( 2 )
  260. DO 100 I = 3, N
  261. B( I, J ) = ( B( I, J )-DU( I-1 )*B( I-1, J )-
  262. $ DU2( I-2 )*B( I-2, J ) ) / D( I )
  263. 100 CONTINUE
  264. *
  265. * Solve L**T * x = b.
  266. *
  267. DO 110 I = N - 1, 1, -1
  268. IF( IPIV( I ).EQ.I ) THEN
  269. B( I, J ) = B( I, J ) - DL( I )*B( I+1, J )
  270. ELSE
  271. TEMP = B( I+1, J )
  272. B( I+1, J ) = B( I, J ) - DL( I )*TEMP
  273. B( I, J ) = TEMP
  274. END IF
  275. 110 CONTINUE
  276. 120 CONTINUE
  277. END IF
  278. ELSE
  279. *
  280. * Solve A**H * X = B.
  281. *
  282. IF( NRHS.LE.1 ) THEN
  283. J = 1
  284. 130 CONTINUE
  285. *
  286. * Solve U**H * x = b.
  287. *
  288. B( 1, J ) = B( 1, J ) / CONJG( D( 1 ) )
  289. IF( N.GT.1 )
  290. $ B( 2, J ) = ( B( 2, J )-CONJG( DU( 1 ) )*B( 1, J ) ) /
  291. $ CONJG( D( 2 ) )
  292. DO 140 I = 3, N
  293. B( I, J ) = ( B( I, J )-CONJG( DU( I-1 ) )*B( I-1, J )-
  294. $ CONJG( DU2( I-2 ) )*B( I-2, J ) ) /
  295. $ CONJG( D( I ) )
  296. 140 CONTINUE
  297. *
  298. * Solve L**H * x = b.
  299. *
  300. DO 150 I = N - 1, 1, -1
  301. IF( IPIV( I ).EQ.I ) THEN
  302. B( I, J ) = B( I, J ) - CONJG( DL( I ) )*B( I+1, J )
  303. ELSE
  304. TEMP = B( I+1, J )
  305. B( I+1, J ) = B( I, J ) - CONJG( DL( I ) )*TEMP
  306. B( I, J ) = TEMP
  307. END IF
  308. 150 CONTINUE
  309. IF( J.LT.NRHS ) THEN
  310. J = J + 1
  311. GO TO 130
  312. END IF
  313. ELSE
  314. DO 180 J = 1, NRHS
  315. *
  316. * Solve U**H * x = b.
  317. *
  318. B( 1, J ) = B( 1, J ) / CONJG( D( 1 ) )
  319. IF( N.GT.1 )
  320. $ B( 2, J ) = ( B( 2, J )-CONJG( DU( 1 ) )*B( 1, J ) ) /
  321. $ CONJG( D( 2 ) )
  322. DO 160 I = 3, N
  323. B( I, J ) = ( B( I, J )-CONJG( DU( I-1 ) )*
  324. $ B( I-1, J )-CONJG( DU2( I-2 ) )*
  325. $ B( I-2, J ) ) / CONJG( D( I ) )
  326. 160 CONTINUE
  327. *
  328. * Solve L**H * x = b.
  329. *
  330. DO 170 I = N - 1, 1, -1
  331. IF( IPIV( I ).EQ.I ) THEN
  332. B( I, J ) = B( I, J ) - CONJG( DL( I ) )*
  333. $ B( I+1, J )
  334. ELSE
  335. TEMP = B( I+1, J )
  336. B( I+1, J ) = B( I, J ) - CONJG( DL( I ) )*TEMP
  337. B( I, J ) = TEMP
  338. END IF
  339. 170 CONTINUE
  340. 180 CONTINUE
  341. END IF
  342. END IF
  343. *
  344. * End of CGTTS2
  345. *
  346. END