|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221 |
- *> \brief \b CGEHD2 reduces a general square matrix to upper Hessenberg form using an unblocked algorithm.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download CGEHD2 + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgehd2.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgehd2.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgehd2.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CGEHD2( N, ILO, IHI, A, LDA, TAU, WORK, INFO )
- *
- * .. Scalar Arguments ..
- * INTEGER IHI, ILO, INFO, LDA, N
- * ..
- * .. Array Arguments ..
- * COMPLEX A( LDA, * ), TAU( * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CGEHD2 reduces a complex general matrix A to upper Hessenberg form H
- *> by a unitary similarity transformation: Q**H * A * Q = H .
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] ILO
- *> \verbatim
- *> ILO is INTEGER
- *> \endverbatim
- *>
- *> \param[in] IHI
- *> \verbatim
- *> IHI is INTEGER
- *>
- *> It is assumed that A is already upper triangular in rows
- *> and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
- *> set by a previous call to CGEBAL; otherwise they should be
- *> set to 1 and N respectively. See Further Details.
- *> 1 <= ILO <= IHI <= max(1,N).
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is COMPLEX array, dimension (LDA,N)
- *> On entry, the n by n general matrix to be reduced.
- *> On exit, the upper triangle and the first subdiagonal of A
- *> are overwritten with the upper Hessenberg matrix H, and the
- *> elements below the first subdiagonal, with the array TAU,
- *> represent the unitary matrix Q as a product of elementary
- *> reflectors. See Further Details.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] TAU
- *> \verbatim
- *> TAU is COMPLEX array, dimension (N-1)
- *> The scalar factors of the elementary reflectors (see Further
- *> Details).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX array, dimension (N)
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complexGEcomputational
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *>
- *> The matrix Q is represented as a product of (ihi-ilo) elementary
- *> reflectors
- *>
- *> Q = H(ilo) H(ilo+1) . . . H(ihi-1).
- *>
- *> Each H(i) has the form
- *>
- *> H(i) = I - tau * v * v**H
- *>
- *> where tau is a complex scalar, and v is a complex vector with
- *> v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on
- *> exit in A(i+2:ihi,i), and tau in TAU(i).
- *>
- *> The contents of A are illustrated by the following example, with
- *> n = 7, ilo = 2 and ihi = 6:
- *>
- *> on entry, on exit,
- *>
- *> ( a a a a a a a ) ( a a h h h h a )
- *> ( a a a a a a ) ( a h h h h a )
- *> ( a a a a a a ) ( h h h h h h )
- *> ( a a a a a a ) ( v2 h h h h h )
- *> ( a a a a a a ) ( v2 v3 h h h h )
- *> ( a a a a a a ) ( v2 v3 v4 h h h )
- *> ( a ) ( a )
- *>
- *> where a denotes an element of the original matrix A, h denotes a
- *> modified element of the upper Hessenberg matrix H, and vi denotes an
- *> element of the vector defining H(i).
- *> \endverbatim
- *>
- * =====================================================================
- SUBROUTINE CGEHD2( N, ILO, IHI, A, LDA, TAU, WORK, INFO )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER IHI, ILO, INFO, LDA, N
- * ..
- * .. Array Arguments ..
- COMPLEX A( LDA, * ), TAU( * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- COMPLEX ONE
- PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ) )
- * ..
- * .. Local Scalars ..
- INTEGER I
- COMPLEX ALPHA
- * ..
- * .. External Subroutines ..
- EXTERNAL CLARF, CLARFG, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC CONJG, MAX, MIN
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters
- *
- INFO = 0
- IF( N.LT.0 ) THEN
- INFO = -1
- ELSE IF( ILO.LT.1 .OR. ILO.GT.MAX( 1, N ) ) THEN
- INFO = -2
- ELSE IF( IHI.LT.MIN( ILO, N ) .OR. IHI.GT.N ) THEN
- INFO = -3
- ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
- INFO = -5
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'CGEHD2', -INFO )
- RETURN
- END IF
- *
- DO 10 I = ILO, IHI - 1
- *
- * Compute elementary reflector H(i) to annihilate A(i+2:ihi,i)
- *
- ALPHA = A( I+1, I )
- CALL CLARFG( IHI-I, ALPHA, A( MIN( I+2, N ), I ), 1, TAU( I ) )
- A( I+1, I ) = ONE
- *
- * Apply H(i) to A(1:ihi,i+1:ihi) from the right
- *
- CALL CLARF( 'Right', IHI, IHI-I, A( I+1, I ), 1, TAU( I ),
- $ A( 1, I+1 ), LDA, WORK )
- *
- * Apply H(i)**H to A(i+1:ihi,i+1:n) from the left
- *
- CALL CLARF( 'Left', IHI-I, N-I, A( I+1, I ), 1,
- $ CONJG( TAU( I ) ), A( I+1, I+1 ), LDA, WORK )
- *
- A( I+1, I ) = ALPHA
- 10 CONTINUE
- *
- RETURN
- *
- * End of CGEHD2
- *
- END
|