You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zhptri.f 12 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407
  1. *> \brief \b ZHPTRI
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZHPTRI + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhptri.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhptri.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhptri.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZHPTRI( UPLO, N, AP, IPIV, WORK, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER UPLO
  25. * INTEGER INFO, N
  26. * ..
  27. * .. Array Arguments ..
  28. * INTEGER IPIV( * )
  29. * COMPLEX*16 AP( * ), WORK( * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> ZHPTRI computes the inverse of a complex Hermitian indefinite matrix
  39. *> A in packed storage using the factorization A = U*D*U**H or
  40. *> A = L*D*L**H computed by ZHPTRF.
  41. *> \endverbatim
  42. *
  43. * Arguments:
  44. * ==========
  45. *
  46. *> \param[in] UPLO
  47. *> \verbatim
  48. *> UPLO is CHARACTER*1
  49. *> Specifies whether the details of the factorization are stored
  50. *> as an upper or lower triangular matrix.
  51. *> = 'U': Upper triangular, form is A = U*D*U**H;
  52. *> = 'L': Lower triangular, form is A = L*D*L**H.
  53. *> \endverbatim
  54. *>
  55. *> \param[in] N
  56. *> \verbatim
  57. *> N is INTEGER
  58. *> The order of the matrix A. N >= 0.
  59. *> \endverbatim
  60. *>
  61. *> \param[in,out] AP
  62. *> \verbatim
  63. *> AP is COMPLEX*16 array, dimension (N*(N+1)/2)
  64. *> On entry, the block diagonal matrix D and the multipliers
  65. *> used to obtain the factor U or L as computed by ZHPTRF,
  66. *> stored as a packed triangular matrix.
  67. *>
  68. *> On exit, if INFO = 0, the (Hermitian) inverse of the original
  69. *> matrix, stored as a packed triangular matrix. The j-th column
  70. *> of inv(A) is stored in the array AP as follows:
  71. *> if UPLO = 'U', AP(i + (j-1)*j/2) = inv(A)(i,j) for 1<=i<=j;
  72. *> if UPLO = 'L',
  73. *> AP(i + (j-1)*(2n-j)/2) = inv(A)(i,j) for j<=i<=n.
  74. *> \endverbatim
  75. *>
  76. *> \param[in] IPIV
  77. *> \verbatim
  78. *> IPIV is INTEGER array, dimension (N)
  79. *> Details of the interchanges and the block structure of D
  80. *> as determined by ZHPTRF.
  81. *> \endverbatim
  82. *>
  83. *> \param[out] WORK
  84. *> \verbatim
  85. *> WORK is COMPLEX*16 array, dimension (N)
  86. *> \endverbatim
  87. *>
  88. *> \param[out] INFO
  89. *> \verbatim
  90. *> INFO is INTEGER
  91. *> = 0: successful exit
  92. *> < 0: if INFO = -i, the i-th argument had an illegal value
  93. *> > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
  94. *> inverse could not be computed.
  95. *> \endverbatim
  96. *
  97. * Authors:
  98. * ========
  99. *
  100. *> \author Univ. of Tennessee
  101. *> \author Univ. of California Berkeley
  102. *> \author Univ. of Colorado Denver
  103. *> \author NAG Ltd.
  104. *
  105. *> \ingroup complex16OTHERcomputational
  106. *
  107. * =====================================================================
  108. SUBROUTINE ZHPTRI( UPLO, N, AP, IPIV, WORK, INFO )
  109. *
  110. * -- LAPACK computational routine --
  111. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  112. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  113. *
  114. * .. Scalar Arguments ..
  115. CHARACTER UPLO
  116. INTEGER INFO, N
  117. * ..
  118. * .. Array Arguments ..
  119. INTEGER IPIV( * )
  120. COMPLEX*16 AP( * ), WORK( * )
  121. * ..
  122. *
  123. * =====================================================================
  124. *
  125. * .. Parameters ..
  126. DOUBLE PRECISION ONE
  127. COMPLEX*16 CONE, ZERO
  128. PARAMETER ( ONE = 1.0D+0, CONE = ( 1.0D+0, 0.0D+0 ),
  129. $ ZERO = ( 0.0D+0, 0.0D+0 ) )
  130. * ..
  131. * .. Local Scalars ..
  132. LOGICAL UPPER
  133. INTEGER J, K, KC, KCNEXT, KP, KPC, KSTEP, KX, NPP
  134. DOUBLE PRECISION AK, AKP1, D, T
  135. COMPLEX*16 AKKP1, TEMP
  136. * ..
  137. * .. External Functions ..
  138. LOGICAL LSAME
  139. COMPLEX*16 ZDOTC
  140. EXTERNAL LSAME, ZDOTC
  141. * ..
  142. * .. External Subroutines ..
  143. EXTERNAL XERBLA, ZCOPY, ZHPMV, ZSWAP
  144. * ..
  145. * .. Intrinsic Functions ..
  146. INTRINSIC ABS, DBLE, DCONJG
  147. * ..
  148. * .. Executable Statements ..
  149. *
  150. * Test the input parameters.
  151. *
  152. INFO = 0
  153. UPPER = LSAME( UPLO, 'U' )
  154. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  155. INFO = -1
  156. ELSE IF( N.LT.0 ) THEN
  157. INFO = -2
  158. END IF
  159. IF( INFO.NE.0 ) THEN
  160. CALL XERBLA( 'ZHPTRI', -INFO )
  161. RETURN
  162. END IF
  163. *
  164. * Quick return if possible
  165. *
  166. IF( N.EQ.0 )
  167. $ RETURN
  168. *
  169. * Check that the diagonal matrix D is nonsingular.
  170. *
  171. IF( UPPER ) THEN
  172. *
  173. * Upper triangular storage: examine D from bottom to top
  174. *
  175. KP = N*( N+1 ) / 2
  176. DO 10 INFO = N, 1, -1
  177. IF( IPIV( INFO ).GT.0 .AND. AP( KP ).EQ.ZERO )
  178. $ RETURN
  179. KP = KP - INFO
  180. 10 CONTINUE
  181. ELSE
  182. *
  183. * Lower triangular storage: examine D from top to bottom.
  184. *
  185. KP = 1
  186. DO 20 INFO = 1, N
  187. IF( IPIV( INFO ).GT.0 .AND. AP( KP ).EQ.ZERO )
  188. $ RETURN
  189. KP = KP + N - INFO + 1
  190. 20 CONTINUE
  191. END IF
  192. INFO = 0
  193. *
  194. IF( UPPER ) THEN
  195. *
  196. * Compute inv(A) from the factorization A = U*D*U**H.
  197. *
  198. * K is the main loop index, increasing from 1 to N in steps of
  199. * 1 or 2, depending on the size of the diagonal blocks.
  200. *
  201. K = 1
  202. KC = 1
  203. 30 CONTINUE
  204. *
  205. * If K > N, exit from loop.
  206. *
  207. IF( K.GT.N )
  208. $ GO TO 50
  209. *
  210. KCNEXT = KC + K
  211. IF( IPIV( K ).GT.0 ) THEN
  212. *
  213. * 1 x 1 diagonal block
  214. *
  215. * Invert the diagonal block.
  216. *
  217. AP( KC+K-1 ) = ONE / DBLE( AP( KC+K-1 ) )
  218. *
  219. * Compute column K of the inverse.
  220. *
  221. IF( K.GT.1 ) THEN
  222. CALL ZCOPY( K-1, AP( KC ), 1, WORK, 1 )
  223. CALL ZHPMV( UPLO, K-1, -CONE, AP, WORK, 1, ZERO,
  224. $ AP( KC ), 1 )
  225. AP( KC+K-1 ) = AP( KC+K-1 ) -
  226. $ DBLE( ZDOTC( K-1, WORK, 1, AP( KC ), 1 ) )
  227. END IF
  228. KSTEP = 1
  229. ELSE
  230. *
  231. * 2 x 2 diagonal block
  232. *
  233. * Invert the diagonal block.
  234. *
  235. T = ABS( AP( KCNEXT+K-1 ) )
  236. AK = DBLE( AP( KC+K-1 ) ) / T
  237. AKP1 = DBLE( AP( KCNEXT+K ) ) / T
  238. AKKP1 = AP( KCNEXT+K-1 ) / T
  239. D = T*( AK*AKP1-ONE )
  240. AP( KC+K-1 ) = AKP1 / D
  241. AP( KCNEXT+K ) = AK / D
  242. AP( KCNEXT+K-1 ) = -AKKP1 / D
  243. *
  244. * Compute columns K and K+1 of the inverse.
  245. *
  246. IF( K.GT.1 ) THEN
  247. CALL ZCOPY( K-1, AP( KC ), 1, WORK, 1 )
  248. CALL ZHPMV( UPLO, K-1, -CONE, AP, WORK, 1, ZERO,
  249. $ AP( KC ), 1 )
  250. AP( KC+K-1 ) = AP( KC+K-1 ) -
  251. $ DBLE( ZDOTC( K-1, WORK, 1, AP( KC ), 1 ) )
  252. AP( KCNEXT+K-1 ) = AP( KCNEXT+K-1 ) -
  253. $ ZDOTC( K-1, AP( KC ), 1, AP( KCNEXT ),
  254. $ 1 )
  255. CALL ZCOPY( K-1, AP( KCNEXT ), 1, WORK, 1 )
  256. CALL ZHPMV( UPLO, K-1, -CONE, AP, WORK, 1, ZERO,
  257. $ AP( KCNEXT ), 1 )
  258. AP( KCNEXT+K ) = AP( KCNEXT+K ) -
  259. $ DBLE( ZDOTC( K-1, WORK, 1, AP( KCNEXT ),
  260. $ 1 ) )
  261. END IF
  262. KSTEP = 2
  263. KCNEXT = KCNEXT + K + 1
  264. END IF
  265. *
  266. KP = ABS( IPIV( K ) )
  267. IF( KP.NE.K ) THEN
  268. *
  269. * Interchange rows and columns K and KP in the leading
  270. * submatrix A(1:k+1,1:k+1)
  271. *
  272. KPC = ( KP-1 )*KP / 2 + 1
  273. CALL ZSWAP( KP-1, AP( KC ), 1, AP( KPC ), 1 )
  274. KX = KPC + KP - 1
  275. DO 40 J = KP + 1, K - 1
  276. KX = KX + J - 1
  277. TEMP = DCONJG( AP( KC+J-1 ) )
  278. AP( KC+J-1 ) = DCONJG( AP( KX ) )
  279. AP( KX ) = TEMP
  280. 40 CONTINUE
  281. AP( KC+KP-1 ) = DCONJG( AP( KC+KP-1 ) )
  282. TEMP = AP( KC+K-1 )
  283. AP( KC+K-1 ) = AP( KPC+KP-1 )
  284. AP( KPC+KP-1 ) = TEMP
  285. IF( KSTEP.EQ.2 ) THEN
  286. TEMP = AP( KC+K+K-1 )
  287. AP( KC+K+K-1 ) = AP( KC+K+KP-1 )
  288. AP( KC+K+KP-1 ) = TEMP
  289. END IF
  290. END IF
  291. *
  292. K = K + KSTEP
  293. KC = KCNEXT
  294. GO TO 30
  295. 50 CONTINUE
  296. *
  297. ELSE
  298. *
  299. * Compute inv(A) from the factorization A = L*D*L**H.
  300. *
  301. * K is the main loop index, increasing from 1 to N in steps of
  302. * 1 or 2, depending on the size of the diagonal blocks.
  303. *
  304. NPP = N*( N+1 ) / 2
  305. K = N
  306. KC = NPP
  307. 60 CONTINUE
  308. *
  309. * If K < 1, exit from loop.
  310. *
  311. IF( K.LT.1 )
  312. $ GO TO 80
  313. *
  314. KCNEXT = KC - ( N-K+2 )
  315. IF( IPIV( K ).GT.0 ) THEN
  316. *
  317. * 1 x 1 diagonal block
  318. *
  319. * Invert the diagonal block.
  320. *
  321. AP( KC ) = ONE / DBLE( AP( KC ) )
  322. *
  323. * Compute column K of the inverse.
  324. *
  325. IF( K.LT.N ) THEN
  326. CALL ZCOPY( N-K, AP( KC+1 ), 1, WORK, 1 )
  327. CALL ZHPMV( UPLO, N-K, -CONE, AP( KC+N-K+1 ), WORK, 1,
  328. $ ZERO, AP( KC+1 ), 1 )
  329. AP( KC ) = AP( KC ) - DBLE( ZDOTC( N-K, WORK, 1,
  330. $ AP( KC+1 ), 1 ) )
  331. END IF
  332. KSTEP = 1
  333. ELSE
  334. *
  335. * 2 x 2 diagonal block
  336. *
  337. * Invert the diagonal block.
  338. *
  339. T = ABS( AP( KCNEXT+1 ) )
  340. AK = DBLE( AP( KCNEXT ) ) / T
  341. AKP1 = DBLE( AP( KC ) ) / T
  342. AKKP1 = AP( KCNEXT+1 ) / T
  343. D = T*( AK*AKP1-ONE )
  344. AP( KCNEXT ) = AKP1 / D
  345. AP( KC ) = AK / D
  346. AP( KCNEXT+1 ) = -AKKP1 / D
  347. *
  348. * Compute columns K-1 and K of the inverse.
  349. *
  350. IF( K.LT.N ) THEN
  351. CALL ZCOPY( N-K, AP( KC+1 ), 1, WORK, 1 )
  352. CALL ZHPMV( UPLO, N-K, -CONE, AP( KC+( N-K+1 ) ), WORK,
  353. $ 1, ZERO, AP( KC+1 ), 1 )
  354. AP( KC ) = AP( KC ) - DBLE( ZDOTC( N-K, WORK, 1,
  355. $ AP( KC+1 ), 1 ) )
  356. AP( KCNEXT+1 ) = AP( KCNEXT+1 ) -
  357. $ ZDOTC( N-K, AP( KC+1 ), 1,
  358. $ AP( KCNEXT+2 ), 1 )
  359. CALL ZCOPY( N-K, AP( KCNEXT+2 ), 1, WORK, 1 )
  360. CALL ZHPMV( UPLO, N-K, -CONE, AP( KC+( N-K+1 ) ), WORK,
  361. $ 1, ZERO, AP( KCNEXT+2 ), 1 )
  362. AP( KCNEXT ) = AP( KCNEXT ) -
  363. $ DBLE( ZDOTC( N-K, WORK, 1, AP( KCNEXT+2 ),
  364. $ 1 ) )
  365. END IF
  366. KSTEP = 2
  367. KCNEXT = KCNEXT - ( N-K+3 )
  368. END IF
  369. *
  370. KP = ABS( IPIV( K ) )
  371. IF( KP.NE.K ) THEN
  372. *
  373. * Interchange rows and columns K and KP in the trailing
  374. * submatrix A(k-1:n,k-1:n)
  375. *
  376. KPC = NPP - ( N-KP+1 )*( N-KP+2 ) / 2 + 1
  377. IF( KP.LT.N )
  378. $ CALL ZSWAP( N-KP, AP( KC+KP-K+1 ), 1, AP( KPC+1 ), 1 )
  379. KX = KC + KP - K
  380. DO 70 J = K + 1, KP - 1
  381. KX = KX + N - J + 1
  382. TEMP = DCONJG( AP( KC+J-K ) )
  383. AP( KC+J-K ) = DCONJG( AP( KX ) )
  384. AP( KX ) = TEMP
  385. 70 CONTINUE
  386. AP( KC+KP-K ) = DCONJG( AP( KC+KP-K ) )
  387. TEMP = AP( KC )
  388. AP( KC ) = AP( KPC )
  389. AP( KPC ) = TEMP
  390. IF( KSTEP.EQ.2 ) THEN
  391. TEMP = AP( KC-N+K-1 )
  392. AP( KC-N+K-1 ) = AP( KC-N+KP-1 )
  393. AP( KC-N+KP-1 ) = TEMP
  394. END IF
  395. END IF
  396. *
  397. K = K - KSTEP
  398. KC = KCNEXT
  399. GO TO 60
  400. 80 CONTINUE
  401. END IF
  402. *
  403. RETURN
  404. *
  405. * End of ZHPTRI
  406. *
  407. END