You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zgetsls.f 14 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493
  1. *> \brief \b ZGETSLS
  2. *
  3. * Definition:
  4. * ===========
  5. *
  6. * SUBROUTINE ZGETSLS( TRANS, M, N, NRHS, A, LDA, B, LDB,
  7. * $ WORK, LWORK, INFO )
  8. *
  9. * .. Scalar Arguments ..
  10. * CHARACTER TRANS
  11. * INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS
  12. * ..
  13. * .. Array Arguments ..
  14. * COMPLEX*16 A( LDA, * ), B( LDB, * ), WORK( * )
  15. * ..
  16. *
  17. *
  18. *> \par Purpose:
  19. * =============
  20. *>
  21. *> \verbatim
  22. *>
  23. *> ZGETSLS solves overdetermined or underdetermined complex linear systems
  24. *> involving an M-by-N matrix A, using a tall skinny QR or short wide LQ
  25. *> factorization of A. It is assumed that A has full rank.
  26. *>
  27. *>
  28. *>
  29. *> The following options are provided:
  30. *>
  31. *> 1. If TRANS = 'N' and m >= n: find the least squares solution of
  32. *> an overdetermined system, i.e., solve the least squares problem
  33. *> minimize || B - A*X ||.
  34. *>
  35. *> 2. If TRANS = 'N' and m < n: find the minimum norm solution of
  36. *> an underdetermined system A * X = B.
  37. *>
  38. *> 3. If TRANS = 'C' and m >= n: find the minimum norm solution of
  39. *> an undetermined system A**T * X = B.
  40. *>
  41. *> 4. If TRANS = 'C' and m < n: find the least squares solution of
  42. *> an overdetermined system, i.e., solve the least squares problem
  43. *> minimize || B - A**T * X ||.
  44. *>
  45. *> Several right hand side vectors b and solution vectors x can be
  46. *> handled in a single call; they are stored as the columns of the
  47. *> M-by-NRHS right hand side matrix B and the N-by-NRHS solution
  48. *> matrix X.
  49. *> \endverbatim
  50. *
  51. * Arguments:
  52. * ==========
  53. *
  54. *> \param[in] TRANS
  55. *> \verbatim
  56. *> TRANS is CHARACTER*1
  57. *> = 'N': the linear system involves A;
  58. *> = 'C': the linear system involves A**H.
  59. *> \endverbatim
  60. *>
  61. *> \param[in] M
  62. *> \verbatim
  63. *> M is INTEGER
  64. *> The number of rows of the matrix A. M >= 0.
  65. *> \endverbatim
  66. *>
  67. *> \param[in] N
  68. *> \verbatim
  69. *> N is INTEGER
  70. *> The number of columns of the matrix A. N >= 0.
  71. *> \endverbatim
  72. *>
  73. *> \param[in] NRHS
  74. *> \verbatim
  75. *> NRHS is INTEGER
  76. *> The number of right hand sides, i.e., the number of
  77. *> columns of the matrices B and X. NRHS >=0.
  78. *> \endverbatim
  79. *>
  80. *> \param[in,out] A
  81. *> \verbatim
  82. *> A is COMPLEX*16 array, dimension (LDA,N)
  83. *> On entry, the M-by-N matrix A.
  84. *> On exit,
  85. *> A is overwritten by details of its QR or LQ
  86. *> factorization as returned by ZGEQR or ZGELQ.
  87. *> \endverbatim
  88. *>
  89. *> \param[in] LDA
  90. *> \verbatim
  91. *> LDA is INTEGER
  92. *> The leading dimension of the array A. LDA >= max(1,M).
  93. *> \endverbatim
  94. *>
  95. *> \param[in,out] B
  96. *> \verbatim
  97. *> B is COMPLEX*16 array, dimension (LDB,NRHS)
  98. *> On entry, the matrix B of right hand side vectors, stored
  99. *> columnwise; B is M-by-NRHS if TRANS = 'N', or N-by-NRHS
  100. *> if TRANS = 'C'.
  101. *> On exit, if INFO = 0, B is overwritten by the solution
  102. *> vectors, stored columnwise:
  103. *> if TRANS = 'N' and m >= n, rows 1 to n of B contain the least
  104. *> squares solution vectors.
  105. *> if TRANS = 'N' and m < n, rows 1 to N of B contain the
  106. *> minimum norm solution vectors;
  107. *> if TRANS = 'C' and m >= n, rows 1 to M of B contain the
  108. *> minimum norm solution vectors;
  109. *> if TRANS = 'C' and m < n, rows 1 to M of B contain the
  110. *> least squares solution vectors.
  111. *> \endverbatim
  112. *>
  113. *> \param[in] LDB
  114. *> \verbatim
  115. *> LDB is INTEGER
  116. *> The leading dimension of the array B. LDB >= MAX(1,M,N).
  117. *> \endverbatim
  118. *>
  119. *> \param[out] WORK
  120. *> \verbatim
  121. *> (workspace) COMPLEX*16 array, dimension (MAX(1,LWORK))
  122. *> On exit, if INFO = 0, WORK(1) contains optimal (or either minimal
  123. *> or optimal, if query was assumed) LWORK.
  124. *> See LWORK for details.
  125. *> \endverbatim
  126. *>
  127. *> \param[in] LWORK
  128. *> \verbatim
  129. *> LWORK is INTEGER
  130. *> The dimension of the array WORK.
  131. *> If LWORK = -1 or -2, then a workspace query is assumed.
  132. *> If LWORK = -1, the routine calculates optimal size of WORK for the
  133. *> optimal performance and returns this value in WORK(1).
  134. *> If LWORK = -2, the routine calculates minimal size of WORK and
  135. *> returns this value in WORK(1).
  136. *> \endverbatim
  137. *>
  138. *> \param[out] INFO
  139. *> \verbatim
  140. *> INFO is INTEGER
  141. *> = 0: successful exit
  142. *> < 0: if INFO = -i, the i-th argument had an illegal value
  143. *> > 0: if INFO = i, the i-th diagonal element of the
  144. *> triangular factor of A is zero, so that A does not have
  145. *> full rank; the least squares solution could not be
  146. *> computed.
  147. *> \endverbatim
  148. *
  149. * Authors:
  150. * ========
  151. *
  152. *> \author Univ. of Tennessee
  153. *> \author Univ. of California Berkeley
  154. *> \author Univ. of Colorado Denver
  155. *> \author NAG Ltd.
  156. *
  157. *> \ingroup complex16GEsolve
  158. *
  159. * =====================================================================
  160. SUBROUTINE ZGETSLS( TRANS, M, N, NRHS, A, LDA, B, LDB,
  161. $ WORK, LWORK, INFO )
  162. *
  163. * -- LAPACK driver routine --
  164. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  165. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  166. *
  167. * .. Scalar Arguments ..
  168. CHARACTER TRANS
  169. INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS
  170. * ..
  171. * .. Array Arguments ..
  172. COMPLEX*16 A( LDA, * ), B( LDB, * ), WORK( * )
  173. *
  174. * ..
  175. *
  176. * =====================================================================
  177. *
  178. * .. Parameters ..
  179. DOUBLE PRECISION ZERO, ONE
  180. PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
  181. COMPLEX*16 CZERO
  182. PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ) )
  183. * ..
  184. * .. Local Scalars ..
  185. LOGICAL LQUERY, TRAN
  186. INTEGER I, IASCL, IBSCL, J, MAXMN, BROW,
  187. $ SCLLEN, TSZO, TSZM, LWO, LWM, LW1, LW2,
  188. $ WSIZEO, WSIZEM, INFO2
  189. DOUBLE PRECISION ANRM, BIGNUM, BNRM, SMLNUM, DUM( 1 )
  190. COMPLEX*16 TQ( 5 ), WORKQ( 1 )
  191. * ..
  192. * .. External Functions ..
  193. LOGICAL LSAME
  194. DOUBLE PRECISION DLAMCH, ZLANGE
  195. EXTERNAL LSAME, DLABAD, DLAMCH, ZLANGE
  196. * ..
  197. * .. External Subroutines ..
  198. EXTERNAL ZGEQR, ZGEMQR, ZLASCL, ZLASET,
  199. $ ZTRTRS, XERBLA, ZGELQ, ZGEMLQ
  200. * ..
  201. * .. Intrinsic Functions ..
  202. INTRINSIC DBLE, MAX, MIN, INT
  203. * ..
  204. * .. Executable Statements ..
  205. *
  206. * Test the input arguments.
  207. *
  208. INFO = 0
  209. MAXMN = MAX( M, N )
  210. TRAN = LSAME( TRANS, 'C' )
  211. *
  212. LQUERY = ( LWORK.EQ.-1 .OR. LWORK.EQ.-2 )
  213. IF( .NOT.( LSAME( TRANS, 'N' ) .OR.
  214. $ LSAME( TRANS, 'C' ) ) ) THEN
  215. INFO = -1
  216. ELSE IF( M.LT.0 ) THEN
  217. INFO = -2
  218. ELSE IF( N.LT.0 ) THEN
  219. INFO = -3
  220. ELSE IF( NRHS.LT.0 ) THEN
  221. INFO = -4
  222. ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  223. INFO = -6
  224. ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
  225. INFO = -8
  226. END IF
  227. *
  228. IF( INFO.EQ.0 ) THEN
  229. *
  230. * Determine the optimum and minimum LWORK
  231. *
  232. IF( M.GE.N ) THEN
  233. CALL ZGEQR( M, N, A, LDA, TQ, -1, WORKQ, -1, INFO2 )
  234. TSZO = INT( TQ( 1 ) )
  235. LWO = INT( WORKQ( 1 ) )
  236. CALL ZGEMQR( 'L', TRANS, M, NRHS, N, A, LDA, TQ,
  237. $ TSZO, B, LDB, WORKQ, -1, INFO2 )
  238. LWO = MAX( LWO, INT( WORKQ( 1 ) ) )
  239. CALL ZGEQR( M, N, A, LDA, TQ, -2, WORKQ, -2, INFO2 )
  240. TSZM = INT( TQ( 1 ) )
  241. LWM = INT( WORKQ( 1 ) )
  242. CALL ZGEMQR( 'L', TRANS, M, NRHS, N, A, LDA, TQ,
  243. $ TSZM, B, LDB, WORKQ, -1, INFO2 )
  244. LWM = MAX( LWM, INT( WORKQ( 1 ) ) )
  245. WSIZEO = TSZO + LWO
  246. WSIZEM = TSZM + LWM
  247. ELSE
  248. CALL ZGELQ( M, N, A, LDA, TQ, -1, WORKQ, -1, INFO2 )
  249. TSZO = INT( TQ( 1 ) )
  250. LWO = INT( WORKQ( 1 ) )
  251. CALL ZGEMLQ( 'L', TRANS, N, NRHS, M, A, LDA, TQ,
  252. $ TSZO, B, LDB, WORKQ, -1, INFO2 )
  253. LWO = MAX( LWO, INT( WORKQ( 1 ) ) )
  254. CALL ZGELQ( M, N, A, LDA, TQ, -2, WORKQ, -2, INFO2 )
  255. TSZM = INT( TQ( 1 ) )
  256. LWM = INT( WORKQ( 1 ) )
  257. CALL ZGEMLQ( 'L', TRANS, N, NRHS, M, A, LDA, TQ,
  258. $ TSZM, B, LDB, WORKQ, -1, INFO2 )
  259. LWM = MAX( LWM, INT( WORKQ( 1 ) ) )
  260. WSIZEO = TSZO + LWO
  261. WSIZEM = TSZM + LWM
  262. END IF
  263. *
  264. IF( ( LWORK.LT.WSIZEM ).AND.( .NOT.LQUERY ) ) THEN
  265. INFO = -10
  266. END IF
  267. *
  268. WORK( 1 ) = DBLE( WSIZEO )
  269. *
  270. END IF
  271. *
  272. IF( INFO.NE.0 ) THEN
  273. CALL XERBLA( 'ZGETSLS', -INFO )
  274. RETURN
  275. END IF
  276. IF( LQUERY ) THEN
  277. IF( LWORK.EQ.-2 ) WORK( 1 ) = DBLE( WSIZEM )
  278. RETURN
  279. END IF
  280. IF( LWORK.LT.WSIZEO ) THEN
  281. LW1 = TSZM
  282. LW2 = LWM
  283. ELSE
  284. LW1 = TSZO
  285. LW2 = LWO
  286. END IF
  287. *
  288. * Quick return if possible
  289. *
  290. IF( MIN( M, N, NRHS ).EQ.0 ) THEN
  291. CALL ZLASET( 'FULL', MAX( M, N ), NRHS, CZERO, CZERO,
  292. $ B, LDB )
  293. RETURN
  294. END IF
  295. *
  296. * Get machine parameters
  297. *
  298. SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' )
  299. BIGNUM = ONE / SMLNUM
  300. CALL DLABAD( SMLNUM, BIGNUM )
  301. *
  302. * Scale A, B if max element outside range [SMLNUM,BIGNUM]
  303. *
  304. ANRM = ZLANGE( 'M', M, N, A, LDA, DUM )
  305. IASCL = 0
  306. IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  307. *
  308. * Scale matrix norm up to SMLNUM
  309. *
  310. CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
  311. IASCL = 1
  312. ELSE IF( ANRM.GT.BIGNUM ) THEN
  313. *
  314. * Scale matrix norm down to BIGNUM
  315. *
  316. CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
  317. IASCL = 2
  318. ELSE IF( ANRM.EQ.ZERO ) THEN
  319. *
  320. * Matrix all zero. Return zero solution.
  321. *
  322. CALL ZLASET( 'F', MAXMN, NRHS, CZERO, CZERO, B, LDB )
  323. GO TO 50
  324. END IF
  325. *
  326. BROW = M
  327. IF ( TRAN ) THEN
  328. BROW = N
  329. END IF
  330. BNRM = ZLANGE( 'M', BROW, NRHS, B, LDB, DUM )
  331. IBSCL = 0
  332. IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
  333. *
  334. * Scale matrix norm up to SMLNUM
  335. *
  336. CALL ZLASCL( 'G', 0, 0, BNRM, SMLNUM, BROW, NRHS, B, LDB,
  337. $ INFO )
  338. IBSCL = 1
  339. ELSE IF( BNRM.GT.BIGNUM ) THEN
  340. *
  341. * Scale matrix norm down to BIGNUM
  342. *
  343. CALL ZLASCL( 'G', 0, 0, BNRM, BIGNUM, BROW, NRHS, B, LDB,
  344. $ INFO )
  345. IBSCL = 2
  346. END IF
  347. *
  348. IF ( M.GE.N ) THEN
  349. *
  350. * compute QR factorization of A
  351. *
  352. CALL ZGEQR( M, N, A, LDA, WORK( LW2+1 ), LW1,
  353. $ WORK( 1 ), LW2, INFO )
  354. IF ( .NOT.TRAN ) THEN
  355. *
  356. * Least-Squares Problem min || A * X - B ||
  357. *
  358. * B(1:M,1:NRHS) := Q**T * B(1:M,1:NRHS)
  359. *
  360. CALL ZGEMQR( 'L' , 'C', M, NRHS, N, A, LDA,
  361. $ WORK( LW2+1 ), LW1, B, LDB, WORK( 1 ), LW2,
  362. $ INFO )
  363. *
  364. * B(1:N,1:NRHS) := inv(R) * B(1:N,1:NRHS)
  365. *
  366. CALL ZTRTRS( 'U', 'N', 'N', N, NRHS,
  367. $ A, LDA, B, LDB, INFO )
  368. IF( INFO.GT.0 ) THEN
  369. RETURN
  370. END IF
  371. SCLLEN = N
  372. ELSE
  373. *
  374. * Overdetermined system of equations A**T * X = B
  375. *
  376. * B(1:N,1:NRHS) := inv(R**T) * B(1:N,1:NRHS)
  377. *
  378. CALL ZTRTRS( 'U', 'C', 'N', N, NRHS,
  379. $ A, LDA, B, LDB, INFO )
  380. *
  381. IF( INFO.GT.0 ) THEN
  382. RETURN
  383. END IF
  384. *
  385. * B(N+1:M,1:NRHS) = CZERO
  386. *
  387. DO 20 J = 1, NRHS
  388. DO 10 I = N + 1, M
  389. B( I, J ) = CZERO
  390. 10 CONTINUE
  391. 20 CONTINUE
  392. *
  393. * B(1:M,1:NRHS) := Q(1:N,:) * B(1:N,1:NRHS)
  394. *
  395. CALL ZGEMQR( 'L', 'N', M, NRHS, N, A, LDA,
  396. $ WORK( LW2+1 ), LW1, B, LDB, WORK( 1 ), LW2,
  397. $ INFO )
  398. *
  399. SCLLEN = M
  400. *
  401. END IF
  402. *
  403. ELSE
  404. *
  405. * Compute LQ factorization of A
  406. *
  407. CALL ZGELQ( M, N, A, LDA, WORK( LW2+1 ), LW1,
  408. $ WORK( 1 ), LW2, INFO )
  409. *
  410. * workspace at least M, optimally M*NB.
  411. *
  412. IF( .NOT.TRAN ) THEN
  413. *
  414. * underdetermined system of equations A * X = B
  415. *
  416. * B(1:M,1:NRHS) := inv(L) * B(1:M,1:NRHS)
  417. *
  418. CALL ZTRTRS( 'L', 'N', 'N', M, NRHS,
  419. $ A, LDA, B, LDB, INFO )
  420. *
  421. IF( INFO.GT.0 ) THEN
  422. RETURN
  423. END IF
  424. *
  425. * B(M+1:N,1:NRHS) = 0
  426. *
  427. DO 40 J = 1, NRHS
  428. DO 30 I = M + 1, N
  429. B( I, J ) = CZERO
  430. 30 CONTINUE
  431. 40 CONTINUE
  432. *
  433. * B(1:N,1:NRHS) := Q(1:N,:)**T * B(1:M,1:NRHS)
  434. *
  435. CALL ZGEMLQ( 'L', 'C', N, NRHS, M, A, LDA,
  436. $ WORK( LW2+1 ), LW1, B, LDB, WORK( 1 ), LW2,
  437. $ INFO )
  438. *
  439. * workspace at least NRHS, optimally NRHS*NB
  440. *
  441. SCLLEN = N
  442. *
  443. ELSE
  444. *
  445. * overdetermined system min || A**T * X - B ||
  446. *
  447. * B(1:N,1:NRHS) := Q * B(1:N,1:NRHS)
  448. *
  449. CALL ZGEMLQ( 'L', 'N', N, NRHS, M, A, LDA,
  450. $ WORK( LW2+1 ), LW1, B, LDB, WORK( 1 ), LW2,
  451. $ INFO )
  452. *
  453. * workspace at least NRHS, optimally NRHS*NB
  454. *
  455. * B(1:M,1:NRHS) := inv(L**T) * B(1:M,1:NRHS)
  456. *
  457. CALL ZTRTRS( 'L', 'C', 'N', M, NRHS,
  458. $ A, LDA, B, LDB, INFO )
  459. *
  460. IF( INFO.GT.0 ) THEN
  461. RETURN
  462. END IF
  463. *
  464. SCLLEN = M
  465. *
  466. END IF
  467. *
  468. END IF
  469. *
  470. * Undo scaling
  471. *
  472. IF( IASCL.EQ.1 ) THEN
  473. CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, SCLLEN, NRHS, B, LDB,
  474. $ INFO )
  475. ELSE IF( IASCL.EQ.2 ) THEN
  476. CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, SCLLEN, NRHS, B, LDB,
  477. $ INFO )
  478. END IF
  479. IF( IBSCL.EQ.1 ) THEN
  480. CALL ZLASCL( 'G', 0, 0, SMLNUM, BNRM, SCLLEN, NRHS, B, LDB,
  481. $ INFO )
  482. ELSE IF( IBSCL.EQ.2 ) THEN
  483. CALL ZLASCL( 'G', 0, 0, BIGNUM, BNRM, SCLLEN, NRHS, B, LDB,
  484. $ INFO )
  485. END IF
  486. *
  487. 50 CONTINUE
  488. WORK( 1 ) = DBLE( TSZO + LWO )
  489. RETURN
  490. *
  491. * End of ZGETSLS
  492. *
  493. END