You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zgbtf2.f 8.1 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274
  1. *> \brief \b ZGBTF2 computes the LU factorization of a general band matrix using the unblocked version of the algorithm.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZGBTF2 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgbtf2.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgbtf2.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgbtf2.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZGBTF2( M, N, KL, KU, AB, LDAB, IPIV, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * INTEGER INFO, KL, KU, LDAB, M, N
  25. * ..
  26. * .. Array Arguments ..
  27. * INTEGER IPIV( * )
  28. * COMPLEX*16 AB( LDAB, * )
  29. * ..
  30. *
  31. *
  32. *> \par Purpose:
  33. * =============
  34. *>
  35. *> \verbatim
  36. *>
  37. *> ZGBTF2 computes an LU factorization of a complex m-by-n band matrix
  38. *> A using partial pivoting with row interchanges.
  39. *>
  40. *> This is the unblocked version of the algorithm, calling Level 2 BLAS.
  41. *> \endverbatim
  42. *
  43. * Arguments:
  44. * ==========
  45. *
  46. *> \param[in] M
  47. *> \verbatim
  48. *> M is INTEGER
  49. *> The number of rows of the matrix A. M >= 0.
  50. *> \endverbatim
  51. *>
  52. *> \param[in] N
  53. *> \verbatim
  54. *> N is INTEGER
  55. *> The number of columns of the matrix A. N >= 0.
  56. *> \endverbatim
  57. *>
  58. *> \param[in] KL
  59. *> \verbatim
  60. *> KL is INTEGER
  61. *> The number of subdiagonals within the band of A. KL >= 0.
  62. *> \endverbatim
  63. *>
  64. *> \param[in] KU
  65. *> \verbatim
  66. *> KU is INTEGER
  67. *> The number of superdiagonals within the band of A. KU >= 0.
  68. *> \endverbatim
  69. *>
  70. *> \param[in,out] AB
  71. *> \verbatim
  72. *> AB is COMPLEX*16 array, dimension (LDAB,N)
  73. *> On entry, the matrix A in band storage, in rows KL+1 to
  74. *> 2*KL+KU+1; rows 1 to KL of the array need not be set.
  75. *> The j-th column of A is stored in the j-th column of the
  76. *> array AB as follows:
  77. *> AB(kl+ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl)
  78. *>
  79. *> On exit, details of the factorization: U is stored as an
  80. *> upper triangular band matrix with KL+KU superdiagonals in
  81. *> rows 1 to KL+KU+1, and the multipliers used during the
  82. *> factorization are stored in rows KL+KU+2 to 2*KL+KU+1.
  83. *> See below for further details.
  84. *> \endverbatim
  85. *>
  86. *> \param[in] LDAB
  87. *> \verbatim
  88. *> LDAB is INTEGER
  89. *> The leading dimension of the array AB. LDAB >= 2*KL+KU+1.
  90. *> \endverbatim
  91. *>
  92. *> \param[out] IPIV
  93. *> \verbatim
  94. *> IPIV is INTEGER array, dimension (min(M,N))
  95. *> The pivot indices; for 1 <= i <= min(M,N), row i of the
  96. *> matrix was interchanged with row IPIV(i).
  97. *> \endverbatim
  98. *>
  99. *> \param[out] INFO
  100. *> \verbatim
  101. *> INFO is INTEGER
  102. *> = 0: successful exit
  103. *> < 0: if INFO = -i, the i-th argument had an illegal value
  104. *> > 0: if INFO = +i, U(i,i) is exactly zero. The factorization
  105. *> has been completed, but the factor U is exactly
  106. *> singular, and division by zero will occur if it is used
  107. *> to solve a system of equations.
  108. *> \endverbatim
  109. *
  110. * Authors:
  111. * ========
  112. *
  113. *> \author Univ. of Tennessee
  114. *> \author Univ. of California Berkeley
  115. *> \author Univ. of Colorado Denver
  116. *> \author NAG Ltd.
  117. *
  118. *> \ingroup complex16GBcomputational
  119. *
  120. *> \par Further Details:
  121. * =====================
  122. *>
  123. *> \verbatim
  124. *>
  125. *> The band storage scheme is illustrated by the following example, when
  126. *> M = N = 6, KL = 2, KU = 1:
  127. *>
  128. *> On entry: On exit:
  129. *>
  130. *> * * * + + + * * * u14 u25 u36
  131. *> * * + + + + * * u13 u24 u35 u46
  132. *> * a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56
  133. *> a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66
  134. *> a21 a32 a43 a54 a65 * m21 m32 m43 m54 m65 *
  135. *> a31 a42 a53 a64 * * m31 m42 m53 m64 * *
  136. *>
  137. *> Array elements marked * are not used by the routine; elements marked
  138. *> + need not be set on entry, but are required by the routine to store
  139. *> elements of U, because of fill-in resulting from the row
  140. *> interchanges.
  141. *> \endverbatim
  142. *>
  143. * =====================================================================
  144. SUBROUTINE ZGBTF2( M, N, KL, KU, AB, LDAB, IPIV, INFO )
  145. *
  146. * -- LAPACK computational routine --
  147. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  148. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  149. *
  150. * .. Scalar Arguments ..
  151. INTEGER INFO, KL, KU, LDAB, M, N
  152. * ..
  153. * .. Array Arguments ..
  154. INTEGER IPIV( * )
  155. COMPLEX*16 AB( LDAB, * )
  156. * ..
  157. *
  158. * =====================================================================
  159. *
  160. * .. Parameters ..
  161. COMPLEX*16 ONE, ZERO
  162. PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ),
  163. $ ZERO = ( 0.0D+0, 0.0D+0 ) )
  164. * ..
  165. * .. Local Scalars ..
  166. INTEGER I, J, JP, JU, KM, KV
  167. * ..
  168. * .. External Functions ..
  169. INTEGER IZAMAX
  170. EXTERNAL IZAMAX
  171. * ..
  172. * .. External Subroutines ..
  173. EXTERNAL XERBLA, ZGERU, ZSCAL, ZSWAP
  174. * ..
  175. * .. Intrinsic Functions ..
  176. INTRINSIC MAX, MIN
  177. * ..
  178. * .. Executable Statements ..
  179. *
  180. * KV is the number of superdiagonals in the factor U, allowing for
  181. * fill-in.
  182. *
  183. KV = KU + KL
  184. *
  185. * Test the input parameters.
  186. *
  187. INFO = 0
  188. IF( M.LT.0 ) THEN
  189. INFO = -1
  190. ELSE IF( N.LT.0 ) THEN
  191. INFO = -2
  192. ELSE IF( KL.LT.0 ) THEN
  193. INFO = -3
  194. ELSE IF( KU.LT.0 ) THEN
  195. INFO = -4
  196. ELSE IF( LDAB.LT.KL+KV+1 ) THEN
  197. INFO = -6
  198. END IF
  199. IF( INFO.NE.0 ) THEN
  200. CALL XERBLA( 'ZGBTF2', -INFO )
  201. RETURN
  202. END IF
  203. *
  204. * Quick return if possible
  205. *
  206. IF( M.EQ.0 .OR. N.EQ.0 )
  207. $ RETURN
  208. *
  209. * Gaussian elimination with partial pivoting
  210. *
  211. * Set fill-in elements in columns KU+2 to KV to zero.
  212. *
  213. DO 20 J = KU + 2, MIN( KV, N )
  214. DO 10 I = KV - J + 2, KL
  215. AB( I, J ) = ZERO
  216. 10 CONTINUE
  217. 20 CONTINUE
  218. *
  219. * JU is the index of the last column affected by the current stage
  220. * of the factorization.
  221. *
  222. JU = 1
  223. *
  224. DO 40 J = 1, MIN( M, N )
  225. *
  226. * Set fill-in elements in column J+KV to zero.
  227. *
  228. IF( J+KV.LE.N ) THEN
  229. DO 30 I = 1, KL
  230. AB( I, J+KV ) = ZERO
  231. 30 CONTINUE
  232. END IF
  233. *
  234. * Find pivot and test for singularity. KM is the number of
  235. * subdiagonal elements in the current column.
  236. *
  237. KM = MIN( KL, M-J )
  238. JP = IZAMAX( KM+1, AB( KV+1, J ), 1 )
  239. IPIV( J ) = JP + J - 1
  240. IF( AB( KV+JP, J ).NE.ZERO ) THEN
  241. JU = MAX( JU, MIN( J+KU+JP-1, N ) )
  242. *
  243. * Apply interchange to columns J to JU.
  244. *
  245. IF( JP.NE.1 )
  246. $ CALL ZSWAP( JU-J+1, AB( KV+JP, J ), LDAB-1,
  247. $ AB( KV+1, J ), LDAB-1 )
  248. IF( KM.GT.0 ) THEN
  249. *
  250. * Compute multipliers.
  251. *
  252. CALL ZSCAL( KM, ONE / AB( KV+1, J ), AB( KV+2, J ), 1 )
  253. *
  254. * Update trailing submatrix within the band.
  255. *
  256. IF( JU.GT.J )
  257. $ CALL ZGERU( KM, JU-J, -ONE, AB( KV+2, J ), 1,
  258. $ AB( KV, J+1 ), LDAB-1, AB( KV+1, J+1 ),
  259. $ LDAB-1 )
  260. END IF
  261. ELSE
  262. *
  263. * If pivot is zero, set INFO to the index of the pivot
  264. * unless a zero pivot has already been found.
  265. *
  266. IF( INFO.EQ.0 )
  267. $ INFO = J
  268. END IF
  269. 40 CONTINUE
  270. RETURN
  271. *
  272. * End of ZGBTF2
  273. *
  274. END