You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sgecon.f 7.0 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258
  1. *> \brief \b SGECON
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SGECON + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgecon.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgecon.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgecon.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE SGECON( NORM, N, A, LDA, ANORM, RCOND, WORK, IWORK,
  22. * INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER NORM
  26. * INTEGER INFO, LDA, N
  27. * REAL ANORM, RCOND
  28. * ..
  29. * .. Array Arguments ..
  30. * INTEGER IWORK( * )
  31. * REAL A( LDA, * ), WORK( * )
  32. * ..
  33. *
  34. *
  35. *> \par Purpose:
  36. * =============
  37. *>
  38. *> \verbatim
  39. *>
  40. *> SGECON estimates the reciprocal of the condition number of a general
  41. *> real matrix A, in either the 1-norm or the infinity-norm, using
  42. *> the LU factorization computed by SGETRF.
  43. *>
  44. *> An estimate is obtained for norm(inv(A)), and the reciprocal of the
  45. *> condition number is computed as
  46. *> RCOND = 1 / ( norm(A) * norm(inv(A)) ).
  47. *> \endverbatim
  48. *
  49. * Arguments:
  50. * ==========
  51. *
  52. *> \param[in] NORM
  53. *> \verbatim
  54. *> NORM is CHARACTER*1
  55. *> Specifies whether the 1-norm condition number or the
  56. *> infinity-norm condition number is required:
  57. *> = '1' or 'O': 1-norm;
  58. *> = 'I': Infinity-norm.
  59. *> \endverbatim
  60. *>
  61. *> \param[in] N
  62. *> \verbatim
  63. *> N is INTEGER
  64. *> The order of the matrix A. N >= 0.
  65. *> \endverbatim
  66. *>
  67. *> \param[in] A
  68. *> \verbatim
  69. *> A is REAL array, dimension (LDA,N)
  70. *> The factors L and U from the factorization A = P*L*U
  71. *> as computed by SGETRF.
  72. *> \endverbatim
  73. *>
  74. *> \param[in] LDA
  75. *> \verbatim
  76. *> LDA is INTEGER
  77. *> The leading dimension of the array A. LDA >= max(1,N).
  78. *> \endverbatim
  79. *>
  80. *> \param[in] ANORM
  81. *> \verbatim
  82. *> ANORM is REAL
  83. *> If NORM = '1' or 'O', the 1-norm of the original matrix A.
  84. *> If NORM = 'I', the infinity-norm of the original matrix A.
  85. *> \endverbatim
  86. *>
  87. *> \param[out] RCOND
  88. *> \verbatim
  89. *> RCOND is REAL
  90. *> The reciprocal of the condition number of the matrix A,
  91. *> computed as RCOND = 1/(norm(A) * norm(inv(A))).
  92. *> \endverbatim
  93. *>
  94. *> \param[out] WORK
  95. *> \verbatim
  96. *> WORK is REAL array, dimension (4*N)
  97. *> \endverbatim
  98. *>
  99. *> \param[out] IWORK
  100. *> \verbatim
  101. *> IWORK is INTEGER array, dimension (N)
  102. *> \endverbatim
  103. *>
  104. *> \param[out] INFO
  105. *> \verbatim
  106. *> INFO is INTEGER
  107. *> = 0: successful exit
  108. *> < 0: if INFO = -i, the i-th argument had an illegal value
  109. *> \endverbatim
  110. *
  111. * Authors:
  112. * ========
  113. *
  114. *> \author Univ. of Tennessee
  115. *> \author Univ. of California Berkeley
  116. *> \author Univ. of Colorado Denver
  117. *> \author NAG Ltd.
  118. *
  119. *> \ingroup realGEcomputational
  120. *
  121. * =====================================================================
  122. SUBROUTINE SGECON( NORM, N, A, LDA, ANORM, RCOND, WORK, IWORK,
  123. $ INFO )
  124. *
  125. * -- LAPACK computational routine --
  126. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  127. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  128. *
  129. * .. Scalar Arguments ..
  130. CHARACTER NORM
  131. INTEGER INFO, LDA, N
  132. REAL ANORM, RCOND
  133. * ..
  134. * .. Array Arguments ..
  135. INTEGER IWORK( * )
  136. REAL A( LDA, * ), WORK( * )
  137. * ..
  138. *
  139. * =====================================================================
  140. *
  141. * .. Parameters ..
  142. REAL ONE, ZERO
  143. PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
  144. * ..
  145. * .. Local Scalars ..
  146. LOGICAL ONENRM
  147. CHARACTER NORMIN
  148. INTEGER IX, KASE, KASE1
  149. REAL AINVNM, SCALE, SL, SMLNUM, SU
  150. * ..
  151. * .. Local Arrays ..
  152. INTEGER ISAVE( 3 )
  153. * ..
  154. * .. External Functions ..
  155. LOGICAL LSAME
  156. INTEGER ISAMAX
  157. REAL SLAMCH
  158. EXTERNAL LSAME, ISAMAX, SLAMCH
  159. * ..
  160. * .. External Subroutines ..
  161. EXTERNAL SLACN2, SLATRS, SRSCL, XERBLA
  162. * ..
  163. * .. Intrinsic Functions ..
  164. INTRINSIC ABS, MAX
  165. * ..
  166. * .. Executable Statements ..
  167. *
  168. * Test the input parameters.
  169. *
  170. INFO = 0
  171. ONENRM = NORM.EQ.'1' .OR. LSAME( NORM, 'O' )
  172. IF( .NOT.ONENRM .AND. .NOT.LSAME( NORM, 'I' ) ) THEN
  173. INFO = -1
  174. ELSE IF( N.LT.0 ) THEN
  175. INFO = -2
  176. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  177. INFO = -4
  178. ELSE IF( ANORM.LT.ZERO ) THEN
  179. INFO = -5
  180. END IF
  181. IF( INFO.NE.0 ) THEN
  182. CALL XERBLA( 'SGECON', -INFO )
  183. RETURN
  184. END IF
  185. *
  186. * Quick return if possible
  187. *
  188. RCOND = ZERO
  189. IF( N.EQ.0 ) THEN
  190. RCOND = ONE
  191. RETURN
  192. ELSE IF( ANORM.EQ.ZERO ) THEN
  193. RETURN
  194. END IF
  195. *
  196. SMLNUM = SLAMCH( 'Safe minimum' )
  197. *
  198. * Estimate the norm of inv(A).
  199. *
  200. AINVNM = ZERO
  201. NORMIN = 'N'
  202. IF( ONENRM ) THEN
  203. KASE1 = 1
  204. ELSE
  205. KASE1 = 2
  206. END IF
  207. KASE = 0
  208. 10 CONTINUE
  209. CALL SLACN2( N, WORK( N+1 ), WORK, IWORK, AINVNM, KASE, ISAVE )
  210. IF( KASE.NE.0 ) THEN
  211. IF( KASE.EQ.KASE1 ) THEN
  212. *
  213. * Multiply by inv(L).
  214. *
  215. CALL SLATRS( 'Lower', 'No transpose', 'Unit', NORMIN, N, A,
  216. $ LDA, WORK, SL, WORK( 2*N+1 ), INFO )
  217. *
  218. * Multiply by inv(U).
  219. *
  220. CALL SLATRS( 'Upper', 'No transpose', 'Non-unit', NORMIN, N,
  221. $ A, LDA, WORK, SU, WORK( 3*N+1 ), INFO )
  222. ELSE
  223. *
  224. * Multiply by inv(U**T).
  225. *
  226. CALL SLATRS( 'Upper', 'Transpose', 'Non-unit', NORMIN, N, A,
  227. $ LDA, WORK, SU, WORK( 3*N+1 ), INFO )
  228. *
  229. * Multiply by inv(L**T).
  230. *
  231. CALL SLATRS( 'Lower', 'Transpose', 'Unit', NORMIN, N, A,
  232. $ LDA, WORK, SL, WORK( 2*N+1 ), INFO )
  233. END IF
  234. *
  235. * Divide X by 1/(SL*SU) if doing so will not cause overflow.
  236. *
  237. SCALE = SL*SU
  238. NORMIN = 'Y'
  239. IF( SCALE.NE.ONE ) THEN
  240. IX = ISAMAX( N, WORK, 1 )
  241. IF( SCALE.LT.ABS( WORK( IX ) )*SMLNUM .OR. SCALE.EQ.ZERO )
  242. $ GO TO 20
  243. CALL SRSCL( N, SCALE, WORK, 1 )
  244. END IF
  245. GO TO 10
  246. END IF
  247. *
  248. * Compute the estimate of the reciprocal condition number.
  249. *
  250. IF( AINVNM.NE.ZERO )
  251. $ RCOND = ( ONE / AINVNM ) / ANORM
  252. *
  253. 20 CONTINUE
  254. RETURN
  255. *
  256. * End of SGECON
  257. *
  258. END