|
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003 |
- *> \brief \b DTFSM solves a matrix equation (one operand is a triangular matrix in RFP format).
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download DTFSM + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtfsm.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtfsm.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtfsm.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DTFSM( TRANSR, SIDE, UPLO, TRANS, DIAG, M, N, ALPHA, A,
- * B, LDB )
- *
- * .. Scalar Arguments ..
- * CHARACTER TRANSR, DIAG, SIDE, TRANS, UPLO
- * INTEGER LDB, M, N
- * DOUBLE PRECISION ALPHA
- * ..
- * .. Array Arguments ..
- * DOUBLE PRECISION A( 0: * ), B( 0: LDB-1, 0: * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> Level 3 BLAS like routine for A in RFP Format.
- *>
- *> DTFSM solves the matrix equation
- *>
- *> op( A )*X = alpha*B or X*op( A ) = alpha*B
- *>
- *> where alpha is a scalar, X and B are m by n matrices, A is a unit, or
- *> non-unit, upper or lower triangular matrix and op( A ) is one of
- *>
- *> op( A ) = A or op( A ) = A**T.
- *>
- *> A is in Rectangular Full Packed (RFP) Format.
- *>
- *> The matrix X is overwritten on B.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] TRANSR
- *> \verbatim
- *> TRANSR is CHARACTER*1
- *> = 'N': The Normal Form of RFP A is stored;
- *> = 'T': The Transpose Form of RFP A is stored.
- *> \endverbatim
- *>
- *> \param[in] SIDE
- *> \verbatim
- *> SIDE is CHARACTER*1
- *> On entry, SIDE specifies whether op( A ) appears on the left
- *> or right of X as follows:
- *>
- *> SIDE = 'L' or 'l' op( A )*X = alpha*B.
- *>
- *> SIDE = 'R' or 'r' X*op( A ) = alpha*B.
- *>
- *> Unchanged on exit.
- *> \endverbatim
- *>
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> On entry, UPLO specifies whether the RFP matrix A came from
- *> an upper or lower triangular matrix as follows:
- *> UPLO = 'U' or 'u' RFP A came from an upper triangular matrix
- *> UPLO = 'L' or 'l' RFP A came from a lower triangular matrix
- *>
- *> Unchanged on exit.
- *> \endverbatim
- *>
- *> \param[in] TRANS
- *> \verbatim
- *> TRANS is CHARACTER*1
- *> On entry, TRANS specifies the form of op( A ) to be used
- *> in the matrix multiplication as follows:
- *>
- *> TRANS = 'N' or 'n' op( A ) = A.
- *>
- *> TRANS = 'T' or 't' op( A ) = A'.
- *>
- *> Unchanged on exit.
- *> \endverbatim
- *>
- *> \param[in] DIAG
- *> \verbatim
- *> DIAG is CHARACTER*1
- *> On entry, DIAG specifies whether or not RFP A is unit
- *> triangular as follows:
- *>
- *> DIAG = 'U' or 'u' A is assumed to be unit triangular.
- *>
- *> DIAG = 'N' or 'n' A is not assumed to be unit
- *> triangular.
- *>
- *> Unchanged on exit.
- *> \endverbatim
- *>
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> On entry, M specifies the number of rows of B. M must be at
- *> least zero.
- *> Unchanged on exit.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> On entry, N specifies the number of columns of B. N must be
- *> at least zero.
- *> Unchanged on exit.
- *> \endverbatim
- *>
- *> \param[in] ALPHA
- *> \verbatim
- *> ALPHA is DOUBLE PRECISION
- *> On entry, ALPHA specifies the scalar alpha. When alpha is
- *> zero then A is not referenced and B need not be set before
- *> entry.
- *> Unchanged on exit.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is DOUBLE PRECISION array, dimension (NT)
- *> NT = N*(N+1)/2. On entry, the matrix A in RFP Format.
- *> RFP Format is described by TRANSR, UPLO and N as follows:
- *> If TRANSR='N' then RFP A is (0:N,0:K-1) when N is even;
- *> K=N/2. RFP A is (0:N-1,0:K) when N is odd; K=N/2. If
- *> TRANSR = 'T' then RFP is the transpose of RFP A as
- *> defined when TRANSR = 'N'. The contents of RFP A are defined
- *> by UPLO as follows: If UPLO = 'U' the RFP A contains the NT
- *> elements of upper packed A either in normal or
- *> transpose Format. If UPLO = 'L' the RFP A contains
- *> the NT elements of lower packed A either in normal or
- *> transpose Format. The LDA of RFP A is (N+1)/2 when
- *> TRANSR = 'T'. When TRANSR is 'N' the LDA is N+1 when N is
- *> even and is N when is odd.
- *> See the Note below for more details. Unchanged on exit.
- *> \endverbatim
- *>
- *> \param[in,out] B
- *> \verbatim
- *> B is DOUBLE PRECISION array, dimension (LDB,N)
- *> Before entry, the leading m by n part of the array B must
- *> contain the right-hand side matrix B, and on exit is
- *> overwritten by the solution matrix X.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> On entry, LDB specifies the first dimension of B as declared
- *> in the calling (sub) program. LDB must be at least
- *> max( 1, m ).
- *> Unchanged on exit.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup doubleOTHERcomputational
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *>
- *> We first consider Rectangular Full Packed (RFP) Format when N is
- *> even. We give an example where N = 6.
- *>
- *> AP is Upper AP is Lower
- *>
- *> 00 01 02 03 04 05 00
- *> 11 12 13 14 15 10 11
- *> 22 23 24 25 20 21 22
- *> 33 34 35 30 31 32 33
- *> 44 45 40 41 42 43 44
- *> 55 50 51 52 53 54 55
- *>
- *>
- *> Let TRANSR = 'N'. RFP holds AP as follows:
- *> For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
- *> three columns of AP upper. The lower triangle A(4:6,0:2) consists of
- *> the transpose of the first three columns of AP upper.
- *> For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
- *> three columns of AP lower. The upper triangle A(0:2,0:2) consists of
- *> the transpose of the last three columns of AP lower.
- *> This covers the case N even and TRANSR = 'N'.
- *>
- *> RFP A RFP A
- *>
- *> 03 04 05 33 43 53
- *> 13 14 15 00 44 54
- *> 23 24 25 10 11 55
- *> 33 34 35 20 21 22
- *> 00 44 45 30 31 32
- *> 01 11 55 40 41 42
- *> 02 12 22 50 51 52
- *>
- *> Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
- *> transpose of RFP A above. One therefore gets:
- *>
- *>
- *> RFP A RFP A
- *>
- *> 03 13 23 33 00 01 02 33 00 10 20 30 40 50
- *> 04 14 24 34 44 11 12 43 44 11 21 31 41 51
- *> 05 15 25 35 45 55 22 53 54 55 22 32 42 52
- *>
- *>
- *> We then consider Rectangular Full Packed (RFP) Format when N is
- *> odd. We give an example where N = 5.
- *>
- *> AP is Upper AP is Lower
- *>
- *> 00 01 02 03 04 00
- *> 11 12 13 14 10 11
- *> 22 23 24 20 21 22
- *> 33 34 30 31 32 33
- *> 44 40 41 42 43 44
- *>
- *>
- *> Let TRANSR = 'N'. RFP holds AP as follows:
- *> For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
- *> three columns of AP upper. The lower triangle A(3:4,0:1) consists of
- *> the transpose of the first two columns of AP upper.
- *> For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
- *> three columns of AP lower. The upper triangle A(0:1,1:2) consists of
- *> the transpose of the last two columns of AP lower.
- *> This covers the case N odd and TRANSR = 'N'.
- *>
- *> RFP A RFP A
- *>
- *> 02 03 04 00 33 43
- *> 12 13 14 10 11 44
- *> 22 23 24 20 21 22
- *> 00 33 34 30 31 32
- *> 01 11 44 40 41 42
- *>
- *> Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
- *> transpose of RFP A above. One therefore gets:
- *>
- *> RFP A RFP A
- *>
- *> 02 12 22 00 01 00 10 20 30 40 50
- *> 03 13 23 33 11 33 11 21 31 41 51
- *> 04 14 24 34 44 43 44 22 32 42 52
- *> \endverbatim
- *
- * =====================================================================
- SUBROUTINE DTFSM( TRANSR, SIDE, UPLO, TRANS, DIAG, M, N, ALPHA, A,
- $ B, LDB )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER TRANSR, DIAG, SIDE, TRANS, UPLO
- INTEGER LDB, M, N
- DOUBLE PRECISION ALPHA
- * ..
- * .. Array Arguments ..
- DOUBLE PRECISION A( 0: * ), B( 0: LDB-1, 0: * )
- * ..
- *
- * =====================================================================
- *
- * ..
- * .. Parameters ..
- DOUBLE PRECISION ONE, ZERO
- PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
- * ..
- * .. Local Scalars ..
- LOGICAL LOWER, LSIDE, MISODD, NISODD, NORMALTRANSR,
- $ NOTRANS
- INTEGER M1, M2, N1, N2, K, INFO, I, J
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * ..
- * .. External Subroutines ..
- EXTERNAL XERBLA, DGEMM, DTRSM
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX, MOD
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- NORMALTRANSR = LSAME( TRANSR, 'N' )
- LSIDE = LSAME( SIDE, 'L' )
- LOWER = LSAME( UPLO, 'L' )
- NOTRANS = LSAME( TRANS, 'N' )
- IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'T' ) ) THEN
- INFO = -1
- ELSE IF( .NOT.LSIDE .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
- INFO = -2
- ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
- INFO = -3
- ELSE IF( .NOT.NOTRANS .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN
- INFO = -4
- ELSE IF( .NOT.LSAME( DIAG, 'N' ) .AND. .NOT.LSAME( DIAG, 'U' ) )
- $ THEN
- INFO = -5
- ELSE IF( M.LT.0 ) THEN
- INFO = -6
- ELSE IF( N.LT.0 ) THEN
- INFO = -7
- ELSE IF( LDB.LT.MAX( 1, M ) ) THEN
- INFO = -11
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'DTFSM ', -INFO )
- RETURN
- END IF
- *
- * Quick return when ( (N.EQ.0).OR.(M.EQ.0) )
- *
- IF( ( M.EQ.0 ) .OR. ( N.EQ.0 ) )
- $ RETURN
- *
- * Quick return when ALPHA.EQ.(0D+0)
- *
- IF( ALPHA.EQ.ZERO ) THEN
- DO 20 J = 0, N - 1
- DO 10 I = 0, M - 1
- B( I, J ) = ZERO
- 10 CONTINUE
- 20 CONTINUE
- RETURN
- END IF
- *
- IF( LSIDE ) THEN
- *
- * SIDE = 'L'
- *
- * A is M-by-M.
- * If M is odd, set NISODD = .TRUE., and M1 and M2.
- * If M is even, NISODD = .FALSE., and M.
- *
- IF( MOD( M, 2 ).EQ.0 ) THEN
- MISODD = .FALSE.
- K = M / 2
- ELSE
- MISODD = .TRUE.
- IF( LOWER ) THEN
- M2 = M / 2
- M1 = M - M2
- ELSE
- M1 = M / 2
- M2 = M - M1
- END IF
- END IF
- *
- *
- IF( MISODD ) THEN
- *
- * SIDE = 'L' and N is odd
- *
- IF( NORMALTRANSR ) THEN
- *
- * SIDE = 'L', N is odd, and TRANSR = 'N'
- *
- IF( LOWER ) THEN
- *
- * SIDE ='L', N is odd, TRANSR = 'N', and UPLO = 'L'
- *
- IF( NOTRANS ) THEN
- *
- * SIDE ='L', N is odd, TRANSR = 'N', UPLO = 'L', and
- * TRANS = 'N'
- *
- IF( M.EQ.1 ) THEN
- CALL DTRSM( 'L', 'L', 'N', DIAG, M1, N, ALPHA,
- $ A, M, B, LDB )
- ELSE
- CALL DTRSM( 'L', 'L', 'N', DIAG, M1, N, ALPHA,
- $ A( 0 ), M, B, LDB )
- CALL DGEMM( 'N', 'N', M2, N, M1, -ONE, A( M1 ),
- $ M, B, LDB, ALPHA, B( M1, 0 ), LDB )
- CALL DTRSM( 'L', 'U', 'T', DIAG, M2, N, ONE,
- $ A( M ), M, B( M1, 0 ), LDB )
- END IF
- *
- ELSE
- *
- * SIDE ='L', N is odd, TRANSR = 'N', UPLO = 'L', and
- * TRANS = 'T'
- *
- IF( M.EQ.1 ) THEN
- CALL DTRSM( 'L', 'L', 'T', DIAG, M1, N, ALPHA,
- $ A( 0 ), M, B, LDB )
- ELSE
- CALL DTRSM( 'L', 'U', 'N', DIAG, M2, N, ALPHA,
- $ A( M ), M, B( M1, 0 ), LDB )
- CALL DGEMM( 'T', 'N', M1, N, M2, -ONE, A( M1 ),
- $ M, B( M1, 0 ), LDB, ALPHA, B, LDB )
- CALL DTRSM( 'L', 'L', 'T', DIAG, M1, N, ONE,
- $ A( 0 ), M, B, LDB )
- END IF
- *
- END IF
- *
- ELSE
- *
- * SIDE ='L', N is odd, TRANSR = 'N', and UPLO = 'U'
- *
- IF( .NOT.NOTRANS ) THEN
- *
- * SIDE ='L', N is odd, TRANSR = 'N', UPLO = 'U', and
- * TRANS = 'N'
- *
- CALL DTRSM( 'L', 'L', 'N', DIAG, M1, N, ALPHA,
- $ A( M2 ), M, B, LDB )
- CALL DGEMM( 'T', 'N', M2, N, M1, -ONE, A( 0 ), M,
- $ B, LDB, ALPHA, B( M1, 0 ), LDB )
- CALL DTRSM( 'L', 'U', 'T', DIAG, M2, N, ONE,
- $ A( M1 ), M, B( M1, 0 ), LDB )
- *
- ELSE
- *
- * SIDE ='L', N is odd, TRANSR = 'N', UPLO = 'U', and
- * TRANS = 'T'
- *
- CALL DTRSM( 'L', 'U', 'N', DIAG, M2, N, ALPHA,
- $ A( M1 ), M, B( M1, 0 ), LDB )
- CALL DGEMM( 'N', 'N', M1, N, M2, -ONE, A( 0 ), M,
- $ B( M1, 0 ), LDB, ALPHA, B, LDB )
- CALL DTRSM( 'L', 'L', 'T', DIAG, M1, N, ONE,
- $ A( M2 ), M, B, LDB )
- *
- END IF
- *
- END IF
- *
- ELSE
- *
- * SIDE = 'L', N is odd, and TRANSR = 'T'
- *
- IF( LOWER ) THEN
- *
- * SIDE ='L', N is odd, TRANSR = 'T', and UPLO = 'L'
- *
- IF( NOTRANS ) THEN
- *
- * SIDE ='L', N is odd, TRANSR = 'T', UPLO = 'L', and
- * TRANS = 'N'
- *
- IF( M.EQ.1 ) THEN
- CALL DTRSM( 'L', 'U', 'T', DIAG, M1, N, ALPHA,
- $ A( 0 ), M1, B, LDB )
- ELSE
- CALL DTRSM( 'L', 'U', 'T', DIAG, M1, N, ALPHA,
- $ A( 0 ), M1, B, LDB )
- CALL DGEMM( 'T', 'N', M2, N, M1, -ONE,
- $ A( M1*M1 ), M1, B, LDB, ALPHA,
- $ B( M1, 0 ), LDB )
- CALL DTRSM( 'L', 'L', 'N', DIAG, M2, N, ONE,
- $ A( 1 ), M1, B( M1, 0 ), LDB )
- END IF
- *
- ELSE
- *
- * SIDE ='L', N is odd, TRANSR = 'T', UPLO = 'L', and
- * TRANS = 'T'
- *
- IF( M.EQ.1 ) THEN
- CALL DTRSM( 'L', 'U', 'N', DIAG, M1, N, ALPHA,
- $ A( 0 ), M1, B, LDB )
- ELSE
- CALL DTRSM( 'L', 'L', 'T', DIAG, M2, N, ALPHA,
- $ A( 1 ), M1, B( M1, 0 ), LDB )
- CALL DGEMM( 'N', 'N', M1, N, M2, -ONE,
- $ A( M1*M1 ), M1, B( M1, 0 ), LDB,
- $ ALPHA, B, LDB )
- CALL DTRSM( 'L', 'U', 'N', DIAG, M1, N, ONE,
- $ A( 0 ), M1, B, LDB )
- END IF
- *
- END IF
- *
- ELSE
- *
- * SIDE ='L', N is odd, TRANSR = 'T', and UPLO = 'U'
- *
- IF( .NOT.NOTRANS ) THEN
- *
- * SIDE ='L', N is odd, TRANSR = 'T', UPLO = 'U', and
- * TRANS = 'N'
- *
- CALL DTRSM( 'L', 'U', 'T', DIAG, M1, N, ALPHA,
- $ A( M2*M2 ), M2, B, LDB )
- CALL DGEMM( 'N', 'N', M2, N, M1, -ONE, A( 0 ), M2,
- $ B, LDB, ALPHA, B( M1, 0 ), LDB )
- CALL DTRSM( 'L', 'L', 'N', DIAG, M2, N, ONE,
- $ A( M1*M2 ), M2, B( M1, 0 ), LDB )
- *
- ELSE
- *
- * SIDE ='L', N is odd, TRANSR = 'T', UPLO = 'U', and
- * TRANS = 'T'
- *
- CALL DTRSM( 'L', 'L', 'T', DIAG, M2, N, ALPHA,
- $ A( M1*M2 ), M2, B( M1, 0 ), LDB )
- CALL DGEMM( 'T', 'N', M1, N, M2, -ONE, A( 0 ), M2,
- $ B( M1, 0 ), LDB, ALPHA, B, LDB )
- CALL DTRSM( 'L', 'U', 'N', DIAG, M1, N, ONE,
- $ A( M2*M2 ), M2, B, LDB )
- *
- END IF
- *
- END IF
- *
- END IF
- *
- ELSE
- *
- * SIDE = 'L' and N is even
- *
- IF( NORMALTRANSR ) THEN
- *
- * SIDE = 'L', N is even, and TRANSR = 'N'
- *
- IF( LOWER ) THEN
- *
- * SIDE ='L', N is even, TRANSR = 'N', and UPLO = 'L'
- *
- IF( NOTRANS ) THEN
- *
- * SIDE ='L', N is even, TRANSR = 'N', UPLO = 'L',
- * and TRANS = 'N'
- *
- CALL DTRSM( 'L', 'L', 'N', DIAG, K, N, ALPHA,
- $ A( 1 ), M+1, B, LDB )
- CALL DGEMM( 'N', 'N', K, N, K, -ONE, A( K+1 ),
- $ M+1, B, LDB, ALPHA, B( K, 0 ), LDB )
- CALL DTRSM( 'L', 'U', 'T', DIAG, K, N, ONE,
- $ A( 0 ), M+1, B( K, 0 ), LDB )
- *
- ELSE
- *
- * SIDE ='L', N is even, TRANSR = 'N', UPLO = 'L',
- * and TRANS = 'T'
- *
- CALL DTRSM( 'L', 'U', 'N', DIAG, K, N, ALPHA,
- $ A( 0 ), M+1, B( K, 0 ), LDB )
- CALL DGEMM( 'T', 'N', K, N, K, -ONE, A( K+1 ),
- $ M+1, B( K, 0 ), LDB, ALPHA, B, LDB )
- CALL DTRSM( 'L', 'L', 'T', DIAG, K, N, ONE,
- $ A( 1 ), M+1, B, LDB )
- *
- END IF
- *
- ELSE
- *
- * SIDE ='L', N is even, TRANSR = 'N', and UPLO = 'U'
- *
- IF( .NOT.NOTRANS ) THEN
- *
- * SIDE ='L', N is even, TRANSR = 'N', UPLO = 'U',
- * and TRANS = 'N'
- *
- CALL DTRSM( 'L', 'L', 'N', DIAG, K, N, ALPHA,
- $ A( K+1 ), M+1, B, LDB )
- CALL DGEMM( 'T', 'N', K, N, K, -ONE, A( 0 ), M+1,
- $ B, LDB, ALPHA, B( K, 0 ), LDB )
- CALL DTRSM( 'L', 'U', 'T', DIAG, K, N, ONE,
- $ A( K ), M+1, B( K, 0 ), LDB )
- *
- ELSE
- *
- * SIDE ='L', N is even, TRANSR = 'N', UPLO = 'U',
- * and TRANS = 'T'
- CALL DTRSM( 'L', 'U', 'N', DIAG, K, N, ALPHA,
- $ A( K ), M+1, B( K, 0 ), LDB )
- CALL DGEMM( 'N', 'N', K, N, K, -ONE, A( 0 ), M+1,
- $ B( K, 0 ), LDB, ALPHA, B, LDB )
- CALL DTRSM( 'L', 'L', 'T', DIAG, K, N, ONE,
- $ A( K+1 ), M+1, B, LDB )
- *
- END IF
- *
- END IF
- *
- ELSE
- *
- * SIDE = 'L', N is even, and TRANSR = 'T'
- *
- IF( LOWER ) THEN
- *
- * SIDE ='L', N is even, TRANSR = 'T', and UPLO = 'L'
- *
- IF( NOTRANS ) THEN
- *
- * SIDE ='L', N is even, TRANSR = 'T', UPLO = 'L',
- * and TRANS = 'N'
- *
- CALL DTRSM( 'L', 'U', 'T', DIAG, K, N, ALPHA,
- $ A( K ), K, B, LDB )
- CALL DGEMM( 'T', 'N', K, N, K, -ONE,
- $ A( K*( K+1 ) ), K, B, LDB, ALPHA,
- $ B( K, 0 ), LDB )
- CALL DTRSM( 'L', 'L', 'N', DIAG, K, N, ONE,
- $ A( 0 ), K, B( K, 0 ), LDB )
- *
- ELSE
- *
- * SIDE ='L', N is even, TRANSR = 'T', UPLO = 'L',
- * and TRANS = 'T'
- *
- CALL DTRSM( 'L', 'L', 'T', DIAG, K, N, ALPHA,
- $ A( 0 ), K, B( K, 0 ), LDB )
- CALL DGEMM( 'N', 'N', K, N, K, -ONE,
- $ A( K*( K+1 ) ), K, B( K, 0 ), LDB,
- $ ALPHA, B, LDB )
- CALL DTRSM( 'L', 'U', 'N', DIAG, K, N, ONE,
- $ A( K ), K, B, LDB )
- *
- END IF
- *
- ELSE
- *
- * SIDE ='L', N is even, TRANSR = 'T', and UPLO = 'U'
- *
- IF( .NOT.NOTRANS ) THEN
- *
- * SIDE ='L', N is even, TRANSR = 'T', UPLO = 'U',
- * and TRANS = 'N'
- *
- CALL DTRSM( 'L', 'U', 'T', DIAG, K, N, ALPHA,
- $ A( K*( K+1 ) ), K, B, LDB )
- CALL DGEMM( 'N', 'N', K, N, K, -ONE, A( 0 ), K, B,
- $ LDB, ALPHA, B( K, 0 ), LDB )
- CALL DTRSM( 'L', 'L', 'N', DIAG, K, N, ONE,
- $ A( K*K ), K, B( K, 0 ), LDB )
- *
- ELSE
- *
- * SIDE ='L', N is even, TRANSR = 'T', UPLO = 'U',
- * and TRANS = 'T'
- *
- CALL DTRSM( 'L', 'L', 'T', DIAG, K, N, ALPHA,
- $ A( K*K ), K, B( K, 0 ), LDB )
- CALL DGEMM( 'T', 'N', K, N, K, -ONE, A( 0 ), K,
- $ B( K, 0 ), LDB, ALPHA, B, LDB )
- CALL DTRSM( 'L', 'U', 'N', DIAG, K, N, ONE,
- $ A( K*( K+1 ) ), K, B, LDB )
- *
- END IF
- *
- END IF
- *
- END IF
- *
- END IF
- *
- ELSE
- *
- * SIDE = 'R'
- *
- * A is N-by-N.
- * If N is odd, set NISODD = .TRUE., and N1 and N2.
- * If N is even, NISODD = .FALSE., and K.
- *
- IF( MOD( N, 2 ).EQ.0 ) THEN
- NISODD = .FALSE.
- K = N / 2
- ELSE
- NISODD = .TRUE.
- IF( LOWER ) THEN
- N2 = N / 2
- N1 = N - N2
- ELSE
- N1 = N / 2
- N2 = N - N1
- END IF
- END IF
- *
- IF( NISODD ) THEN
- *
- * SIDE = 'R' and N is odd
- *
- IF( NORMALTRANSR ) THEN
- *
- * SIDE = 'R', N is odd, and TRANSR = 'N'
- *
- IF( LOWER ) THEN
- *
- * SIDE ='R', N is odd, TRANSR = 'N', and UPLO = 'L'
- *
- IF( NOTRANS ) THEN
- *
- * SIDE ='R', N is odd, TRANSR = 'N', UPLO = 'L', and
- * TRANS = 'N'
- *
- CALL DTRSM( 'R', 'U', 'T', DIAG, M, N2, ALPHA,
- $ A( N ), N, B( 0, N1 ), LDB )
- CALL DGEMM( 'N', 'N', M, N1, N2, -ONE, B( 0, N1 ),
- $ LDB, A( N1 ), N, ALPHA, B( 0, 0 ),
- $ LDB )
- CALL DTRSM( 'R', 'L', 'N', DIAG, M, N1, ONE,
- $ A( 0 ), N, B( 0, 0 ), LDB )
- *
- ELSE
- *
- * SIDE ='R', N is odd, TRANSR = 'N', UPLO = 'L', and
- * TRANS = 'T'
- *
- CALL DTRSM( 'R', 'L', 'T', DIAG, M, N1, ALPHA,
- $ A( 0 ), N, B( 0, 0 ), LDB )
- CALL DGEMM( 'N', 'T', M, N2, N1, -ONE, B( 0, 0 ),
- $ LDB, A( N1 ), N, ALPHA, B( 0, N1 ),
- $ LDB )
- CALL DTRSM( 'R', 'U', 'N', DIAG, M, N2, ONE,
- $ A( N ), N, B( 0, N1 ), LDB )
- *
- END IF
- *
- ELSE
- *
- * SIDE ='R', N is odd, TRANSR = 'N', and UPLO = 'U'
- *
- IF( NOTRANS ) THEN
- *
- * SIDE ='R', N is odd, TRANSR = 'N', UPLO = 'U', and
- * TRANS = 'N'
- *
- CALL DTRSM( 'R', 'L', 'T', DIAG, M, N1, ALPHA,
- $ A( N2 ), N, B( 0, 0 ), LDB )
- CALL DGEMM( 'N', 'N', M, N2, N1, -ONE, B( 0, 0 ),
- $ LDB, A( 0 ), N, ALPHA, B( 0, N1 ),
- $ LDB )
- CALL DTRSM( 'R', 'U', 'N', DIAG, M, N2, ONE,
- $ A( N1 ), N, B( 0, N1 ), LDB )
- *
- ELSE
- *
- * SIDE ='R', N is odd, TRANSR = 'N', UPLO = 'U', and
- * TRANS = 'T'
- *
- CALL DTRSM( 'R', 'U', 'T', DIAG, M, N2, ALPHA,
- $ A( N1 ), N, B( 0, N1 ), LDB )
- CALL DGEMM( 'N', 'T', M, N1, N2, -ONE, B( 0, N1 ),
- $ LDB, A( 0 ), N, ALPHA, B( 0, 0 ), LDB )
- CALL DTRSM( 'R', 'L', 'N', DIAG, M, N1, ONE,
- $ A( N2 ), N, B( 0, 0 ), LDB )
- *
- END IF
- *
- END IF
- *
- ELSE
- *
- * SIDE = 'R', N is odd, and TRANSR = 'T'
- *
- IF( LOWER ) THEN
- *
- * SIDE ='R', N is odd, TRANSR = 'T', and UPLO = 'L'
- *
- IF( NOTRANS ) THEN
- *
- * SIDE ='R', N is odd, TRANSR = 'T', UPLO = 'L', and
- * TRANS = 'N'
- *
- CALL DTRSM( 'R', 'L', 'N', DIAG, M, N2, ALPHA,
- $ A( 1 ), N1, B( 0, N1 ), LDB )
- CALL DGEMM( 'N', 'T', M, N1, N2, -ONE, B( 0, N1 ),
- $ LDB, A( N1*N1 ), N1, ALPHA, B( 0, 0 ),
- $ LDB )
- CALL DTRSM( 'R', 'U', 'T', DIAG, M, N1, ONE,
- $ A( 0 ), N1, B( 0, 0 ), LDB )
- *
- ELSE
- *
- * SIDE ='R', N is odd, TRANSR = 'T', UPLO = 'L', and
- * TRANS = 'T'
- *
- CALL DTRSM( 'R', 'U', 'N', DIAG, M, N1, ALPHA,
- $ A( 0 ), N1, B( 0, 0 ), LDB )
- CALL DGEMM( 'N', 'N', M, N2, N1, -ONE, B( 0, 0 ),
- $ LDB, A( N1*N1 ), N1, ALPHA, B( 0, N1 ),
- $ LDB )
- CALL DTRSM( 'R', 'L', 'T', DIAG, M, N2, ONE,
- $ A( 1 ), N1, B( 0, N1 ), LDB )
- *
- END IF
- *
- ELSE
- *
- * SIDE ='R', N is odd, TRANSR = 'T', and UPLO = 'U'
- *
- IF( NOTRANS ) THEN
- *
- * SIDE ='R', N is odd, TRANSR = 'T', UPLO = 'U', and
- * TRANS = 'N'
- *
- CALL DTRSM( 'R', 'U', 'N', DIAG, M, N1, ALPHA,
- $ A( N2*N2 ), N2, B( 0, 0 ), LDB )
- CALL DGEMM( 'N', 'T', M, N2, N1, -ONE, B( 0, 0 ),
- $ LDB, A( 0 ), N2, ALPHA, B( 0, N1 ),
- $ LDB )
- CALL DTRSM( 'R', 'L', 'T', DIAG, M, N2, ONE,
- $ A( N1*N2 ), N2, B( 0, N1 ), LDB )
- *
- ELSE
- *
- * SIDE ='R', N is odd, TRANSR = 'T', UPLO = 'U', and
- * TRANS = 'T'
- *
- CALL DTRSM( 'R', 'L', 'N', DIAG, M, N2, ALPHA,
- $ A( N1*N2 ), N2, B( 0, N1 ), LDB )
- CALL DGEMM( 'N', 'N', M, N1, N2, -ONE, B( 0, N1 ),
- $ LDB, A( 0 ), N2, ALPHA, B( 0, 0 ),
- $ LDB )
- CALL DTRSM( 'R', 'U', 'T', DIAG, M, N1, ONE,
- $ A( N2*N2 ), N2, B( 0, 0 ), LDB )
- *
- END IF
- *
- END IF
- *
- END IF
- *
- ELSE
- *
- * SIDE = 'R' and N is even
- *
- IF( NORMALTRANSR ) THEN
- *
- * SIDE = 'R', N is even, and TRANSR = 'N'
- *
- IF( LOWER ) THEN
- *
- * SIDE ='R', N is even, TRANSR = 'N', and UPLO = 'L'
- *
- IF( NOTRANS ) THEN
- *
- * SIDE ='R', N is even, TRANSR = 'N', UPLO = 'L',
- * and TRANS = 'N'
- *
- CALL DTRSM( 'R', 'U', 'T', DIAG, M, K, ALPHA,
- $ A( 0 ), N+1, B( 0, K ), LDB )
- CALL DGEMM( 'N', 'N', M, K, K, -ONE, B( 0, K ),
- $ LDB, A( K+1 ), N+1, ALPHA, B( 0, 0 ),
- $ LDB )
- CALL DTRSM( 'R', 'L', 'N', DIAG, M, K, ONE,
- $ A( 1 ), N+1, B( 0, 0 ), LDB )
- *
- ELSE
- *
- * SIDE ='R', N is even, TRANSR = 'N', UPLO = 'L',
- * and TRANS = 'T'
- *
- CALL DTRSM( 'R', 'L', 'T', DIAG, M, K, ALPHA,
- $ A( 1 ), N+1, B( 0, 0 ), LDB )
- CALL DGEMM( 'N', 'T', M, K, K, -ONE, B( 0, 0 ),
- $ LDB, A( K+1 ), N+1, ALPHA, B( 0, K ),
- $ LDB )
- CALL DTRSM( 'R', 'U', 'N', DIAG, M, K, ONE,
- $ A( 0 ), N+1, B( 0, K ), LDB )
- *
- END IF
- *
- ELSE
- *
- * SIDE ='R', N is even, TRANSR = 'N', and UPLO = 'U'
- *
- IF( NOTRANS ) THEN
- *
- * SIDE ='R', N is even, TRANSR = 'N', UPLO = 'U',
- * and TRANS = 'N'
- *
- CALL DTRSM( 'R', 'L', 'T', DIAG, M, K, ALPHA,
- $ A( K+1 ), N+1, B( 0, 0 ), LDB )
- CALL DGEMM( 'N', 'N', M, K, K, -ONE, B( 0, 0 ),
- $ LDB, A( 0 ), N+1, ALPHA, B( 0, K ),
- $ LDB )
- CALL DTRSM( 'R', 'U', 'N', DIAG, M, K, ONE,
- $ A( K ), N+1, B( 0, K ), LDB )
- *
- ELSE
- *
- * SIDE ='R', N is even, TRANSR = 'N', UPLO = 'U',
- * and TRANS = 'T'
- *
- CALL DTRSM( 'R', 'U', 'T', DIAG, M, K, ALPHA,
- $ A( K ), N+1, B( 0, K ), LDB )
- CALL DGEMM( 'N', 'T', M, K, K, -ONE, B( 0, K ),
- $ LDB, A( 0 ), N+1, ALPHA, B( 0, 0 ),
- $ LDB )
- CALL DTRSM( 'R', 'L', 'N', DIAG, M, K, ONE,
- $ A( K+1 ), N+1, B( 0, 0 ), LDB )
- *
- END IF
- *
- END IF
- *
- ELSE
- *
- * SIDE = 'R', N is even, and TRANSR = 'T'
- *
- IF( LOWER ) THEN
- *
- * SIDE ='R', N is even, TRANSR = 'T', and UPLO = 'L'
- *
- IF( NOTRANS ) THEN
- *
- * SIDE ='R', N is even, TRANSR = 'T', UPLO = 'L',
- * and TRANS = 'N'
- *
- CALL DTRSM( 'R', 'L', 'N', DIAG, M, K, ALPHA,
- $ A( 0 ), K, B( 0, K ), LDB )
- CALL DGEMM( 'N', 'T', M, K, K, -ONE, B( 0, K ),
- $ LDB, A( ( K+1 )*K ), K, ALPHA,
- $ B( 0, 0 ), LDB )
- CALL DTRSM( 'R', 'U', 'T', DIAG, M, K, ONE,
- $ A( K ), K, B( 0, 0 ), LDB )
- *
- ELSE
- *
- * SIDE ='R', N is even, TRANSR = 'T', UPLO = 'L',
- * and TRANS = 'T'
- *
- CALL DTRSM( 'R', 'U', 'N', DIAG, M, K, ALPHA,
- $ A( K ), K, B( 0, 0 ), LDB )
- CALL DGEMM( 'N', 'N', M, K, K, -ONE, B( 0, 0 ),
- $ LDB, A( ( K+1 )*K ), K, ALPHA,
- $ B( 0, K ), LDB )
- CALL DTRSM( 'R', 'L', 'T', DIAG, M, K, ONE,
- $ A( 0 ), K, B( 0, K ), LDB )
- *
- END IF
- *
- ELSE
- *
- * SIDE ='R', N is even, TRANSR = 'T', and UPLO = 'U'
- *
- IF( NOTRANS ) THEN
- *
- * SIDE ='R', N is even, TRANSR = 'T', UPLO = 'U',
- * and TRANS = 'N'
- *
- CALL DTRSM( 'R', 'U', 'N', DIAG, M, K, ALPHA,
- $ A( ( K+1 )*K ), K, B( 0, 0 ), LDB )
- CALL DGEMM( 'N', 'T', M, K, K, -ONE, B( 0, 0 ),
- $ LDB, A( 0 ), K, ALPHA, B( 0, K ), LDB )
- CALL DTRSM( 'R', 'L', 'T', DIAG, M, K, ONE,
- $ A( K*K ), K, B( 0, K ), LDB )
- *
- ELSE
- *
- * SIDE ='R', N is even, TRANSR = 'T', UPLO = 'U',
- * and TRANS = 'T'
- *
- CALL DTRSM( 'R', 'L', 'N', DIAG, M, K, ALPHA,
- $ A( K*K ), K, B( 0, K ), LDB )
- CALL DGEMM( 'N', 'N', M, K, K, -ONE, B( 0, K ),
- $ LDB, A( 0 ), K, ALPHA, B( 0, 0 ), LDB )
- CALL DTRSM( 'R', 'U', 'T', DIAG, M, K, ONE,
- $ A( ( K+1 )*K ), K, B( 0, 0 ), LDB )
- *
- END IF
- *
- END IF
- *
- END IF
- *
- END IF
- END IF
- *
- RETURN
- *
- * End of DTFSM
- *
- END
|