You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sgemlqt.f 7.4 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273
  1. *> \brief \b SGEMLQT
  2. *
  3. * Definition:
  4. * ===========
  5. *
  6. * SUBROUTINE SGEMLQT( SIDE, TRANS, M, N, K, MB, V, LDV, T, LDT,
  7. * C, LDC, WORK, INFO )
  8. *
  9. * .. Scalar Arguments ..
  10. * CHARACTER SIDE, TRANS
  11. * INTEGER INFO, K, LDV, LDC, M, N, MB, LDT
  12. * ..
  13. * .. Array Arguments ..
  14. * REAL V( LDV, * ), C( LDC, * ), T( LDT, * ), WORK( * )
  15. * ..
  16. *
  17. *
  18. *> \par Purpose:
  19. * =============
  20. *>
  21. *> \verbatim
  22. *>
  23. *> SGEMLQT overwrites the general real M-by-N matrix C with
  24. *>
  25. *> SIDE = 'L' SIDE = 'R'
  26. *> TRANS = 'N': Q C C Q
  27. *> TRANS = 'T': Q**T C C Q**T
  28. *>
  29. *> where Q is a real orthogonal matrix defined as the product of K
  30. *> elementary reflectors:
  31. *>
  32. *> Q = H(1) H(2) . . . H(K) = I - V T V**T
  33. *>
  34. *> generated using the compact WY representation as returned by SGELQT.
  35. *>
  36. *> Q is of order M if SIDE = 'L' and of order N if SIDE = 'R'.
  37. *> \endverbatim
  38. *
  39. * Arguments:
  40. * ==========
  41. *
  42. *> \param[in] SIDE
  43. *> \verbatim
  44. *> SIDE is CHARACTER*1
  45. *> = 'L': apply Q or Q**T from the Left;
  46. *> = 'R': apply Q or Q**T from the Right.
  47. *> \endverbatim
  48. *>
  49. *> \param[in] TRANS
  50. *> \verbatim
  51. *> TRANS is CHARACTER*1
  52. *> = 'N': No transpose, apply Q;
  53. *> = 'C': Transpose, apply Q**T.
  54. *> \endverbatim
  55. *>
  56. *> \param[in] M
  57. *> \verbatim
  58. *> M is INTEGER
  59. *> The number of rows of the matrix C. M >= 0.
  60. *> \endverbatim
  61. *>
  62. *> \param[in] N
  63. *> \verbatim
  64. *> N is INTEGER
  65. *> The number of columns of the matrix C. N >= 0.
  66. *> \endverbatim
  67. *>
  68. *> \param[in] K
  69. *> \verbatim
  70. *> K is INTEGER
  71. *> The number of elementary reflectors whose product defines
  72. *> the matrix Q.
  73. *> If SIDE = 'L', M >= K >= 0;
  74. *> if SIDE = 'R', N >= K >= 0.
  75. *> \endverbatim
  76. *>
  77. *> \param[in] MB
  78. *> \verbatim
  79. *> MB is INTEGER
  80. *> The block size used for the storage of T. K >= MB >= 1.
  81. *> This must be the same value of MB used to generate T
  82. *> in SGELQT.
  83. *> \endverbatim
  84. *>
  85. *> \param[in] V
  86. *> \verbatim
  87. *> V is REAL array, dimension
  88. *> (LDV,M) if SIDE = 'L',
  89. *> (LDV,N) if SIDE = 'R'
  90. *> The i-th row must contain the vector which defines the
  91. *> elementary reflector H(i), for i = 1,2,...,k, as returned by
  92. *> SGELQT in the first K rows of its array argument A.
  93. *> \endverbatim
  94. *>
  95. *> \param[in] LDV
  96. *> \verbatim
  97. *> LDV is INTEGER
  98. *> The leading dimension of the array V. LDV >= max(1,K).
  99. *> \endverbatim
  100. *>
  101. *> \param[in] T
  102. *> \verbatim
  103. *> T is REAL array, dimension (LDT,K)
  104. *> The upper triangular factors of the block reflectors
  105. *> as returned by SGELQT, stored as a MB-by-K matrix.
  106. *> \endverbatim
  107. *>
  108. *> \param[in] LDT
  109. *> \verbatim
  110. *> LDT is INTEGER
  111. *> The leading dimension of the array T. LDT >= MB.
  112. *> \endverbatim
  113. *>
  114. *> \param[in,out] C
  115. *> \verbatim
  116. *> C is REAL array, dimension (LDC,N)
  117. *> On entry, the M-by-N matrix C.
  118. *> On exit, C is overwritten by Q C, Q**T C, C Q**T or C Q.
  119. *> \endverbatim
  120. *>
  121. *> \param[in] LDC
  122. *> \verbatim
  123. *> LDC is INTEGER
  124. *> The leading dimension of the array C. LDC >= max(1,M).
  125. *> \endverbatim
  126. *>
  127. *> \param[out] WORK
  128. *> \verbatim
  129. *> WORK is REAL array. The dimension of
  130. *> WORK is N*MB if SIDE = 'L', or M*MB if SIDE = 'R'.
  131. *> \endverbatim
  132. *>
  133. *> \param[out] INFO
  134. *> \verbatim
  135. *> INFO is INTEGER
  136. *> = 0: successful exit
  137. *> < 0: if INFO = -i, the i-th argument had an illegal value
  138. *> \endverbatim
  139. *
  140. * Authors:
  141. * ========
  142. *
  143. *> \author Univ. of Tennessee
  144. *> \author Univ. of California Berkeley
  145. *> \author Univ. of Colorado Denver
  146. *> \author NAG Ltd.
  147. *
  148. *> \ingroup gemlqt
  149. *
  150. * =====================================================================
  151. SUBROUTINE SGEMLQT( SIDE, TRANS, M, N, K, MB, V, LDV, T, LDT,
  152. $ C, LDC, WORK, INFO )
  153. *
  154. * -- LAPACK computational routine --
  155. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  156. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  157. *
  158. * .. Scalar Arguments ..
  159. CHARACTER SIDE, TRANS
  160. INTEGER INFO, K, LDV, LDC, M, N, MB, LDT
  161. * ..
  162. * .. Array Arguments ..
  163. REAL V( LDV, * ), C( LDC, * ), T( LDT, * ), WORK( * )
  164. * ..
  165. *
  166. * =====================================================================
  167. *
  168. * ..
  169. * .. Local Scalars ..
  170. LOGICAL LEFT, RIGHT, TRAN, NOTRAN
  171. INTEGER I, IB, LDWORK, KF, Q
  172. * ..
  173. * .. External Functions ..
  174. LOGICAL LSAME
  175. EXTERNAL LSAME
  176. * ..
  177. * .. External Subroutines ..
  178. EXTERNAL XERBLA, SLARFB
  179. * ..
  180. * .. Intrinsic Functions ..
  181. INTRINSIC MAX, MIN
  182. * ..
  183. * .. Executable Statements ..
  184. *
  185. * .. Test the input arguments ..
  186. *
  187. INFO = 0
  188. LEFT = LSAME( SIDE, 'L' )
  189. RIGHT = LSAME( SIDE, 'R' )
  190. TRAN = LSAME( TRANS, 'T' )
  191. NOTRAN = LSAME( TRANS, 'N' )
  192. *
  193. IF( LEFT ) THEN
  194. LDWORK = MAX( 1, N )
  195. Q = M
  196. ELSE IF ( RIGHT ) THEN
  197. LDWORK = MAX( 1, M )
  198. Q = N
  199. END IF
  200. IF( .NOT.LEFT .AND. .NOT.RIGHT ) THEN
  201. INFO = -1
  202. ELSE IF( .NOT.TRAN .AND. .NOT.NOTRAN ) THEN
  203. INFO = -2
  204. ELSE IF( M.LT.0 ) THEN
  205. INFO = -3
  206. ELSE IF( N.LT.0 ) THEN
  207. INFO = -4
  208. ELSE IF( K.LT.0 .OR. K.GT.Q ) THEN
  209. INFO = -5
  210. ELSE IF( MB.LT.1 .OR. (MB.GT.K .AND. K.GT.0)) THEN
  211. INFO = -6
  212. ELSE IF( LDV.LT.MAX( 1, K ) ) THEN
  213. INFO = -8
  214. ELSE IF( LDT.LT.MB ) THEN
  215. INFO = -10
  216. ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
  217. INFO = -12
  218. END IF
  219. *
  220. IF( INFO.NE.0 ) THEN
  221. CALL XERBLA( 'SGEMLQT', -INFO )
  222. RETURN
  223. END IF
  224. *
  225. * .. Quick return if possible ..
  226. *
  227. IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 ) RETURN
  228. *
  229. IF( LEFT .AND. NOTRAN ) THEN
  230. *
  231. DO I = 1, K, MB
  232. IB = MIN( MB, K-I+1 )
  233. CALL SLARFB( 'L', 'T', 'F', 'R', M-I+1, N, IB,
  234. $ V( I, I ), LDV, T( 1, I ), LDT,
  235. $ C( I, 1 ), LDC, WORK, LDWORK )
  236. END DO
  237. *
  238. ELSE IF( RIGHT .AND. TRAN ) THEN
  239. *
  240. DO I = 1, K, MB
  241. IB = MIN( MB, K-I+1 )
  242. CALL SLARFB( 'R', 'N', 'F', 'R', M, N-I+1, IB,
  243. $ V( I, I ), LDV, T( 1, I ), LDT,
  244. $ C( 1, I ), LDC, WORK, LDWORK )
  245. END DO
  246. *
  247. ELSE IF( LEFT .AND. TRAN ) THEN
  248. *
  249. KF = ((K-1)/MB)*MB+1
  250. DO I = KF, 1, -MB
  251. IB = MIN( MB, K-I+1 )
  252. CALL SLARFB( 'L', 'N', 'F', 'R', M-I+1, N, IB,
  253. $ V( I, I ), LDV, T( 1, I ), LDT,
  254. $ C( I, 1 ), LDC, WORK, LDWORK )
  255. END DO
  256. *
  257. ELSE IF( RIGHT .AND. NOTRAN ) THEN
  258. *
  259. KF = ((K-1)/MB)*MB+1
  260. DO I = KF, 1, -MB
  261. IB = MIN( MB, K-I+1 )
  262. CALL SLARFB( 'R', 'T', 'F', 'R', M, N-I+1, IB,
  263. $ V( I, I ), LDV, T( 1, I ), LDT,
  264. $ C( 1, I ), LDC, WORK, LDWORK )
  265. END DO
  266. *
  267. END IF
  268. *
  269. RETURN
  270. *
  271. * End of SGEMLQT
  272. *
  273. END