You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zbdt02.f 5.1 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197
  1. *> \brief \b ZBDT02
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE ZBDT02( M, N, B, LDB, C, LDC, U, LDU, WORK, RWORK,
  12. * RESID )
  13. *
  14. * .. Scalar Arguments ..
  15. * INTEGER LDB, LDC, LDU, M, N
  16. * DOUBLE PRECISION RESID
  17. * ..
  18. * .. Array Arguments ..
  19. * DOUBLE PRECISION RWORK( * )
  20. * COMPLEX*16 B( LDB, * ), C( LDC, * ), U( LDU, * ),
  21. * $ WORK( * )
  22. * ..
  23. *
  24. *
  25. *> \par Purpose:
  26. * =============
  27. *>
  28. *> \verbatim
  29. *>
  30. *> ZBDT02 tests the change of basis C = U**H * B by computing the
  31. *> residual
  32. *>
  33. *> RESID = norm( B - U * C ) / ( max(m,n) * norm(B) * EPS ),
  34. *>
  35. *> where B and C are M by N matrices, U is an M by M orthogonal matrix,
  36. *> and EPS is the machine precision.
  37. *> \endverbatim
  38. *
  39. * Arguments:
  40. * ==========
  41. *
  42. *> \param[in] M
  43. *> \verbatim
  44. *> M is INTEGER
  45. *> The number of rows of the matrices B and C and the order of
  46. *> the matrix Q.
  47. *> \endverbatim
  48. *>
  49. *> \param[in] N
  50. *> \verbatim
  51. *> N is INTEGER
  52. *> The number of columns of the matrices B and C.
  53. *> \endverbatim
  54. *>
  55. *> \param[in] B
  56. *> \verbatim
  57. *> B is COMPLEX*16 array, dimension (LDB,N)
  58. *> The m by n matrix B.
  59. *> \endverbatim
  60. *>
  61. *> \param[in] LDB
  62. *> \verbatim
  63. *> LDB is INTEGER
  64. *> The leading dimension of the array B. LDB >= max(1,M).
  65. *> \endverbatim
  66. *>
  67. *> \param[in] C
  68. *> \verbatim
  69. *> C is COMPLEX*16 array, dimension (LDC,N)
  70. *> The m by n matrix C, assumed to contain U**H * B.
  71. *> \endverbatim
  72. *>
  73. *> \param[in] LDC
  74. *> \verbatim
  75. *> LDC is INTEGER
  76. *> The leading dimension of the array C. LDC >= max(1,M).
  77. *> \endverbatim
  78. *>
  79. *> \param[in] U
  80. *> \verbatim
  81. *> U is COMPLEX*16 array, dimension (LDU,M)
  82. *> The m by m orthogonal matrix U.
  83. *> \endverbatim
  84. *>
  85. *> \param[in] LDU
  86. *> \verbatim
  87. *> LDU is INTEGER
  88. *> The leading dimension of the array U. LDU >= max(1,M).
  89. *> \endverbatim
  90. *>
  91. *> \param[out] WORK
  92. *> \verbatim
  93. *> WORK is COMPLEX*16 array, dimension (M)
  94. *> \endverbatim
  95. *>
  96. *> \param[out] RWORK
  97. *> \verbatim
  98. *> RWORK is DOUBLE PRECISION array, dimension (M)
  99. *> \endverbatim
  100. *>
  101. *> \param[out] RESID
  102. *> \verbatim
  103. *> RESID is DOUBLE PRECISION
  104. *> RESID = norm( B - U * C ) / ( max(m,n) * norm(B) * EPS ),
  105. *> \endverbatim
  106. *
  107. * Authors:
  108. * ========
  109. *
  110. *> \author Univ. of Tennessee
  111. *> \author Univ. of California Berkeley
  112. *> \author Univ. of Colorado Denver
  113. *> \author NAG Ltd.
  114. *
  115. *> \ingroup complex16_eig
  116. *
  117. * =====================================================================
  118. SUBROUTINE ZBDT02( M, N, B, LDB, C, LDC, U, LDU, WORK, RWORK,
  119. $ RESID )
  120. *
  121. * -- LAPACK test routine --
  122. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  123. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  124. *
  125. * .. Scalar Arguments ..
  126. INTEGER LDB, LDC, LDU, M, N
  127. DOUBLE PRECISION RESID
  128. * ..
  129. * .. Array Arguments ..
  130. DOUBLE PRECISION RWORK( * )
  131. COMPLEX*16 B( LDB, * ), C( LDC, * ), U( LDU, * ),
  132. $ WORK( * )
  133. * ..
  134. *
  135. * ======================================================================
  136. *
  137. * .. Parameters ..
  138. DOUBLE PRECISION ZERO, ONE
  139. PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  140. * ..
  141. * .. Local Scalars ..
  142. INTEGER J
  143. DOUBLE PRECISION BNORM, EPS, REALMN
  144. * ..
  145. * .. External Functions ..
  146. DOUBLE PRECISION DLAMCH, DZASUM, ZLANGE
  147. EXTERNAL DLAMCH, DZASUM, ZLANGE
  148. * ..
  149. * .. External Subroutines ..
  150. EXTERNAL ZCOPY, ZGEMV
  151. * ..
  152. * .. Intrinsic Functions ..
  153. INTRINSIC DBLE, DCMPLX, MAX, MIN
  154. * ..
  155. * .. Executable Statements ..
  156. *
  157. * Quick return if possible
  158. *
  159. RESID = ZERO
  160. IF( M.LE.0 .OR. N.LE.0 )
  161. $ RETURN
  162. REALMN = DBLE( MAX( M, N ) )
  163. EPS = DLAMCH( 'Precision' )
  164. *
  165. * Compute norm( B - U * C )
  166. *
  167. DO 10 J = 1, N
  168. CALL ZCOPY( M, B( 1, J ), 1, WORK, 1 )
  169. CALL ZGEMV( 'No transpose', M, M, -DCMPLX( ONE ), U, LDU,
  170. $ C( 1, J ), 1, DCMPLX( ONE ), WORK, 1 )
  171. RESID = MAX( RESID, DZASUM( M, WORK, 1 ) )
  172. 10 CONTINUE
  173. *
  174. * Compute norm of B.
  175. *
  176. BNORM = ZLANGE( '1', M, N, B, LDB, RWORK )
  177. *
  178. IF( BNORM.LE.ZERO ) THEN
  179. IF( RESID.NE.ZERO )
  180. $ RESID = ONE / EPS
  181. ELSE
  182. IF( BNORM.GE.RESID ) THEN
  183. RESID = ( RESID / BNORM ) / ( REALMN*EPS )
  184. ELSE
  185. IF( BNORM.LT.ONE ) THEN
  186. RESID = ( MIN( RESID, REALMN*BNORM ) / BNORM ) /
  187. $ ( REALMN*EPS )
  188. ELSE
  189. RESID = MIN( RESID / BNORM, REALMN ) / ( REALMN*EPS )
  190. END IF
  191. END IF
  192. END IF
  193. RETURN
  194. *
  195. * End of ZBDT02
  196. *
  197. END