You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zhetrs_aa.f 8.6 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311
  1. *> \brief \b ZHETRS_AA
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZHETRS_AA + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhetrs_aa.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhetrs_aa.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhetrs_aa.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZHETRS_AA( UPLO, N, NRHS, A, LDA, IPIV, B, LDB,
  22. * WORK, LWORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER UPLO
  26. * INTEGER N, NRHS, LDA, LDB, LWORK, INFO
  27. * ..
  28. * .. Array Arguments ..
  29. * INTEGER IPIV( * )
  30. * COMPLEX*16 A( LDA, * ), B( LDB, * ), WORK( * )
  31. * ..
  32. *
  33. *
  34. *
  35. *> \par Purpose:
  36. * =============
  37. *>
  38. *> \verbatim
  39. *>
  40. *> ZHETRS_AA solves a system of linear equations A*X = B with a complex
  41. *> hermitian matrix A using the factorization A = U**H*T*U or
  42. *> A = L*T*L**H computed by ZHETRF_AA.
  43. *> \endverbatim
  44. *
  45. * Arguments:
  46. * ==========
  47. *
  48. *> \param[in] UPLO
  49. *> \verbatim
  50. *> UPLO is CHARACTER*1
  51. *> Specifies whether the details of the factorization are stored
  52. *> as an upper or lower triangular matrix.
  53. *> = 'U': Upper triangular, form is A = U**H*T*U;
  54. *> = 'L': Lower triangular, form is A = L*T*L**H.
  55. *> \endverbatim
  56. *>
  57. *> \param[in] N
  58. *> \verbatim
  59. *> N is INTEGER
  60. *> The order of the matrix A. N >= 0.
  61. *> \endverbatim
  62. *>
  63. *> \param[in] NRHS
  64. *> \verbatim
  65. *> NRHS is INTEGER
  66. *> The number of right hand sides, i.e., the number of columns
  67. *> of the matrix B. NRHS >= 0.
  68. *> \endverbatim
  69. *>
  70. *> \param[in] A
  71. *> \verbatim
  72. *> A is COMPLEX*16 array, dimension (LDA,N)
  73. *> Details of factors computed by ZHETRF_AA.
  74. *> \endverbatim
  75. *>
  76. *> \param[in] LDA
  77. *> \verbatim
  78. *> LDA is INTEGER
  79. *> The leading dimension of the array A. LDA >= max(1,N).
  80. *> \endverbatim
  81. *>
  82. *> \param[in] IPIV
  83. *> \verbatim
  84. *> IPIV is INTEGER array, dimension (N)
  85. *> Details of the interchanges as computed by ZHETRF_AA.
  86. *> \endverbatim
  87. *>
  88. *> \param[in,out] B
  89. *> \verbatim
  90. *> B is COMPLEX*16 array, dimension (LDB,NRHS)
  91. *> On entry, the right hand side matrix B.
  92. *> On exit, the solution matrix X.
  93. *> \endverbatim
  94. *>
  95. *> \param[in] LDB
  96. *> \verbatim
  97. *> LDB is INTEGER
  98. *> The leading dimension of the array B. LDB >= max(1,N).
  99. *> \endverbatim
  100. *>
  101. *> \param[out] WORK
  102. *> \verbatim
  103. *> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
  104. *> \endverbatim
  105. *>
  106. *> \param[in] LWORK
  107. *> \verbatim
  108. *> LWORK is INTEGER
  109. *> The dimension of the array WORK. LWORK >= max(1,3*N-2).
  110. *> \endverbatim
  111. *>
  112. *> \param[out] INFO
  113. *> \verbatim
  114. *> INFO is INTEGER
  115. *> = 0: successful exit
  116. *> < 0: if INFO = -i, the i-th argument had an illegal value
  117. *> \endverbatim
  118. *
  119. * Authors:
  120. * ========
  121. *
  122. *> \author Univ. of Tennessee
  123. *> \author Univ. of California Berkeley
  124. *> \author Univ. of Colorado Denver
  125. *> \author NAG Ltd.
  126. *
  127. *> \ingroup complex16HEcomputational
  128. *
  129. * =====================================================================
  130. SUBROUTINE ZHETRS_AA( UPLO, N, NRHS, A, LDA, IPIV, B, LDB,
  131. $ WORK, LWORK, INFO )
  132. *
  133. * -- LAPACK computational routine --
  134. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  135. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  136. *
  137. IMPLICIT NONE
  138. *
  139. * .. Scalar Arguments ..
  140. CHARACTER UPLO
  141. INTEGER N, NRHS, LDA, LDB, LWORK, INFO
  142. * ..
  143. * .. Array Arguments ..
  144. INTEGER IPIV( * )
  145. COMPLEX*16 A( LDA, * ), B( LDB, * ), WORK( * )
  146. * ..
  147. *
  148. * =====================================================================
  149. *
  150. COMPLEX*16 ONE
  151. PARAMETER ( ONE = 1.0D+0 )
  152. * ..
  153. * .. Local Scalars ..
  154. LOGICAL LQUERY, UPPER
  155. INTEGER K, KP, LWKOPT
  156. * ..
  157. * .. External Functions ..
  158. LOGICAL LSAME
  159. EXTERNAL LSAME
  160. * ..
  161. * .. External Subroutines ..
  162. EXTERNAL ZGTSV, ZSWAP, ZTRSM, ZLACGV, ZLACPY, XERBLA
  163. * ..
  164. * .. Intrinsic Functions ..
  165. INTRINSIC MAX
  166. * ..
  167. * .. Executable Statements ..
  168. *
  169. INFO = 0
  170. UPPER = LSAME( UPLO, 'U' )
  171. LQUERY = ( LWORK.EQ.-1 )
  172. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  173. INFO = -1
  174. ELSE IF( N.LT.0 ) THEN
  175. INFO = -2
  176. ELSE IF( NRHS.LT.0 ) THEN
  177. INFO = -3
  178. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  179. INFO = -5
  180. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  181. INFO = -8
  182. ELSE IF( LWORK.LT.MAX( 1, 3*N-2 ) .AND. .NOT.LQUERY ) THEN
  183. INFO = -10
  184. END IF
  185. IF( INFO.NE.0 ) THEN
  186. CALL XERBLA( 'ZHETRS_AA', -INFO )
  187. RETURN
  188. ELSE IF( LQUERY ) THEN
  189. LWKOPT = (3*N-2)
  190. WORK( 1 ) = LWKOPT
  191. RETURN
  192. END IF
  193. *
  194. * Quick return if possible
  195. *
  196. IF( N.EQ.0 .OR. NRHS.EQ.0 )
  197. $ RETURN
  198. *
  199. IF( UPPER ) THEN
  200. *
  201. * Solve A*X = B, where A = U**H*T*U.
  202. *
  203. * 1) Forward substitution with U**H
  204. *
  205. IF( N.GT.1 ) THEN
  206. *
  207. * Pivot, P**T * B -> B
  208. *
  209. DO K = 1, N
  210. KP = IPIV( K )
  211. IF( KP.NE.K )
  212. $ CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  213. END DO
  214. *
  215. * Compute U**H \ B -> B [ (U**H \P**T * B) ]
  216. *
  217. CALL ZTRSM( 'L', 'U', 'C', 'U', N-1, NRHS, ONE, A( 1, 2 ),
  218. $ LDA, B( 2, 1 ), LDB )
  219. END IF
  220. *
  221. * 2) Solve with triangular matrix T
  222. *
  223. * Compute T \ B -> B [ T \ (U**H \P**T * B) ]
  224. *
  225. CALL ZLACPY( 'F', 1, N, A(1, 1), LDA+1, WORK(N), 1 )
  226. IF( N.GT.1 ) THEN
  227. CALL ZLACPY( 'F', 1, N-1, A( 1, 2 ), LDA+1, WORK( 2*N ), 1)
  228. CALL ZLACPY( 'F', 1, N-1, A( 1, 2 ), LDA+1, WORK( 1 ), 1 )
  229. CALL ZLACGV( N-1, WORK( 1 ), 1 )
  230. END IF
  231. CALL ZGTSV( N, NRHS, WORK(1), WORK(N), WORK(2*N), B, LDB,
  232. $ INFO )
  233. *
  234. * 3) Backward substitution with U
  235. *
  236. IF( N.GT.1 ) THEN
  237. *
  238. * Compute U \ B -> B [ U \ (T \ (U**H \P**T * B) ) ]
  239. *
  240. CALL ZTRSM( 'L', 'U', 'N', 'U', N-1, NRHS, ONE, A( 1, 2 ),
  241. $ LDA, B(2, 1), LDB)
  242. *
  243. * Pivot, P * B [ P * (U**H \ (T \ (U \P**T * B) )) ]
  244. *
  245. DO K = N, 1, -1
  246. KP = IPIV( K )
  247. IF( KP.NE.K )
  248. $ CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  249. END DO
  250. END IF
  251. *
  252. ELSE
  253. *
  254. * Solve A*X = B, where A = L*T*L**H.
  255. *
  256. * 1) Forward substitution with L
  257. *
  258. IF( N.GT.1 ) THEN
  259. *
  260. * Pivot, P**T * B -> B
  261. *
  262. DO K = 1, N
  263. KP = IPIV( K )
  264. IF( KP.NE.K )
  265. $ CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  266. END DO
  267. *
  268. * Compute L \ B -> B [ (L \P**T * B) ]
  269. *
  270. CALL ZTRSM( 'L', 'L', 'N', 'U', N-1, NRHS, ONE, A( 2, 1 ),
  271. $ LDA, B(2, 1), LDB)
  272. END IF
  273. *
  274. * 2) Solve with triangular matrix T
  275. *
  276. * Compute T \ B -> B [ T \ (L \P**T * B) ]
  277. *
  278. CALL ZLACPY( 'F', 1, N, A(1, 1), LDA+1, WORK(N), 1)
  279. IF( N.GT.1 ) THEN
  280. CALL ZLACPY( 'F', 1, N-1, A( 2, 1 ), LDA+1, WORK( 1 ), 1)
  281. CALL ZLACPY( 'F', 1, N-1, A( 2, 1 ), LDA+1, WORK( 2*N ), 1)
  282. CALL ZLACGV( N-1, WORK( 2*N ), 1 )
  283. END IF
  284. CALL ZGTSV(N, NRHS, WORK(1), WORK(N), WORK(2*N), B, LDB,
  285. $ INFO)
  286. *
  287. * 3) Backward substitution with L**H
  288. *
  289. IF( N.GT.1 ) THEN
  290. *
  291. * Compute L**H \ B -> B [ L**H \ (T \ (L \P**T * B) ) ]
  292. *
  293. CALL ZTRSM( 'L', 'L', 'C', 'U', N-1, NRHS, ONE, A( 2, 1 ),
  294. $ LDA, B( 2, 1 ), LDB)
  295. *
  296. * Pivot, P * B [ P * (L**H \ (T \ (L \P**T * B) )) ]
  297. *
  298. DO K = N, 1, -1
  299. KP = IPIV( K )
  300. IF( KP.NE.K )
  301. $ CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  302. END DO
  303. END IF
  304. *
  305. END IF
  306. *
  307. RETURN
  308. *
  309. * End of ZHETRS_AA
  310. *
  311. END