You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zgghd3.f 32 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892
  1. *> \brief \b ZGGHD3
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZGGHD3 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgghd3.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgghd3.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgghd3.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZGGHD3( COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB, Q,
  22. * LDQ, Z, LDZ, WORK, LWORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER COMPQ, COMPZ
  26. * INTEGER IHI, ILO, INFO, LDA, LDB, LDQ, LDZ, N, LWORK
  27. * ..
  28. * .. Array Arguments ..
  29. * COMPLEX*16 A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
  30. * $ Z( LDZ, * ), WORK( * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> ZGGHD3 reduces a pair of complex matrices (A,B) to generalized upper
  40. *> Hessenberg form using unitary transformations, where A is a
  41. *> general matrix and B is upper triangular. The form of the
  42. *> generalized eigenvalue problem is
  43. *> A*x = lambda*B*x,
  44. *> and B is typically made upper triangular by computing its QR
  45. *> factorization and moving the unitary matrix Q to the left side
  46. *> of the equation.
  47. *>
  48. *> This subroutine simultaneously reduces A to a Hessenberg matrix H:
  49. *> Q**H*A*Z = H
  50. *> and transforms B to another upper triangular matrix T:
  51. *> Q**H*B*Z = T
  52. *> in order to reduce the problem to its standard form
  53. *> H*y = lambda*T*y
  54. *> where y = Z**H*x.
  55. *>
  56. *> The unitary matrices Q and Z are determined as products of Givens
  57. *> rotations. They may either be formed explicitly, or they may be
  58. *> postmultiplied into input matrices Q1 and Z1, so that
  59. *> Q1 * A * Z1**H = (Q1*Q) * H * (Z1*Z)**H
  60. *> Q1 * B * Z1**H = (Q1*Q) * T * (Z1*Z)**H
  61. *> If Q1 is the unitary matrix from the QR factorization of B in the
  62. *> original equation A*x = lambda*B*x, then ZGGHD3 reduces the original
  63. *> problem to generalized Hessenberg form.
  64. *>
  65. *> This is a blocked variant of CGGHRD, using matrix-matrix
  66. *> multiplications for parts of the computation to enhance performance.
  67. *> \endverbatim
  68. *
  69. * Arguments:
  70. * ==========
  71. *
  72. *> \param[in] COMPQ
  73. *> \verbatim
  74. *> COMPQ is CHARACTER*1
  75. *> = 'N': do not compute Q;
  76. *> = 'I': Q is initialized to the unit matrix, and the
  77. *> unitary matrix Q is returned;
  78. *> = 'V': Q must contain a unitary matrix Q1 on entry,
  79. *> and the product Q1*Q is returned.
  80. *> \endverbatim
  81. *>
  82. *> \param[in] COMPZ
  83. *> \verbatim
  84. *> COMPZ is CHARACTER*1
  85. *> = 'N': do not compute Z;
  86. *> = 'I': Z is initialized to the unit matrix, and the
  87. *> unitary matrix Z is returned;
  88. *> = 'V': Z must contain a unitary matrix Z1 on entry,
  89. *> and the product Z1*Z is returned.
  90. *> \endverbatim
  91. *>
  92. *> \param[in] N
  93. *> \verbatim
  94. *> N is INTEGER
  95. *> The order of the matrices A and B. N >= 0.
  96. *> \endverbatim
  97. *>
  98. *> \param[in] ILO
  99. *> \verbatim
  100. *> ILO is INTEGER
  101. *> \endverbatim
  102. *>
  103. *> \param[in] IHI
  104. *> \verbatim
  105. *> IHI is INTEGER
  106. *>
  107. *> ILO and IHI mark the rows and columns of A which are to be
  108. *> reduced. It is assumed that A is already upper triangular
  109. *> in rows and columns 1:ILO-1 and IHI+1:N. ILO and IHI are
  110. *> normally set by a previous call to ZGGBAL; otherwise they
  111. *> should be set to 1 and N respectively.
  112. *> 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
  113. *> \endverbatim
  114. *>
  115. *> \param[in,out] A
  116. *> \verbatim
  117. *> A is COMPLEX*16 array, dimension (LDA, N)
  118. *> On entry, the N-by-N general matrix to be reduced.
  119. *> On exit, the upper triangle and the first subdiagonal of A
  120. *> are overwritten with the upper Hessenberg matrix H, and the
  121. *> rest is set to zero.
  122. *> \endverbatim
  123. *>
  124. *> \param[in] LDA
  125. *> \verbatim
  126. *> LDA is INTEGER
  127. *> The leading dimension of the array A. LDA >= max(1,N).
  128. *> \endverbatim
  129. *>
  130. *> \param[in,out] B
  131. *> \verbatim
  132. *> B is COMPLEX*16 array, dimension (LDB, N)
  133. *> On entry, the N-by-N upper triangular matrix B.
  134. *> On exit, the upper triangular matrix T = Q**H B Z. The
  135. *> elements below the diagonal are set to zero.
  136. *> \endverbatim
  137. *>
  138. *> \param[in] LDB
  139. *> \verbatim
  140. *> LDB is INTEGER
  141. *> The leading dimension of the array B. LDB >= max(1,N).
  142. *> \endverbatim
  143. *>
  144. *> \param[in,out] Q
  145. *> \verbatim
  146. *> Q is COMPLEX*16 array, dimension (LDQ, N)
  147. *> On entry, if COMPQ = 'V', the unitary matrix Q1, typically
  148. *> from the QR factorization of B.
  149. *> On exit, if COMPQ='I', the unitary matrix Q, and if
  150. *> COMPQ = 'V', the product Q1*Q.
  151. *> Not referenced if COMPQ='N'.
  152. *> \endverbatim
  153. *>
  154. *> \param[in] LDQ
  155. *> \verbatim
  156. *> LDQ is INTEGER
  157. *> The leading dimension of the array Q.
  158. *> LDQ >= N if COMPQ='V' or 'I'; LDQ >= 1 otherwise.
  159. *> \endverbatim
  160. *>
  161. *> \param[in,out] Z
  162. *> \verbatim
  163. *> Z is COMPLEX*16 array, dimension (LDZ, N)
  164. *> On entry, if COMPZ = 'V', the unitary matrix Z1.
  165. *> On exit, if COMPZ='I', the unitary matrix Z, and if
  166. *> COMPZ = 'V', the product Z1*Z.
  167. *> Not referenced if COMPZ='N'.
  168. *> \endverbatim
  169. *>
  170. *> \param[in] LDZ
  171. *> \verbatim
  172. *> LDZ is INTEGER
  173. *> The leading dimension of the array Z.
  174. *> LDZ >= N if COMPZ='V' or 'I'; LDZ >= 1 otherwise.
  175. *> \endverbatim
  176. *>
  177. *> \param[out] WORK
  178. *> \verbatim
  179. *> WORK is COMPLEX*16 array, dimension (LWORK)
  180. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  181. *> \endverbatim
  182. *>
  183. *> \param[in] LWORK
  184. *> \verbatim
  185. *> LWORK is INTEGER
  186. *> The length of the array WORK. LWORK >= 1.
  187. *> For optimum performance LWORK >= 6*N*NB, where NB is the
  188. *> optimal blocksize.
  189. *>
  190. *> If LWORK = -1, then a workspace query is assumed; the routine
  191. *> only calculates the optimal size of the WORK array, returns
  192. *> this value as the first entry of the WORK array, and no error
  193. *> message related to LWORK is issued by XERBLA.
  194. *> \endverbatim
  195. *>
  196. *> \param[out] INFO
  197. *> \verbatim
  198. *> INFO is INTEGER
  199. *> = 0: successful exit.
  200. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  201. *> \endverbatim
  202. *
  203. * Authors:
  204. * ========
  205. *
  206. *> \author Univ. of Tennessee
  207. *> \author Univ. of California Berkeley
  208. *> \author Univ. of Colorado Denver
  209. *> \author NAG Ltd.
  210. *
  211. *> \ingroup complex16OTHERcomputational
  212. *
  213. *> \par Further Details:
  214. * =====================
  215. *>
  216. *> \verbatim
  217. *>
  218. *> This routine reduces A to Hessenberg form and maintains B in triangular form
  219. *> using a blocked variant of Moler and Stewart's original algorithm,
  220. *> as described by Kagstrom, Kressner, Quintana-Orti, and Quintana-Orti
  221. *> (BIT 2008).
  222. *> \endverbatim
  223. *>
  224. * =====================================================================
  225. SUBROUTINE ZGGHD3( COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB, Q,
  226. $ LDQ, Z, LDZ, WORK, LWORK, INFO )
  227. *
  228. * -- LAPACK computational routine --
  229. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  230. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  231. *
  232. IMPLICIT NONE
  233. *
  234. * .. Scalar Arguments ..
  235. CHARACTER COMPQ, COMPZ
  236. INTEGER IHI, ILO, INFO, LDA, LDB, LDQ, LDZ, N, LWORK
  237. * ..
  238. * .. Array Arguments ..
  239. COMPLEX*16 A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
  240. $ Z( LDZ, * ), WORK( * )
  241. * ..
  242. *
  243. * =====================================================================
  244. *
  245. * .. Parameters ..
  246. COMPLEX*16 CONE, CZERO
  247. PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ),
  248. $ CZERO = ( 0.0D+0, 0.0D+0 ) )
  249. * ..
  250. * .. Local Scalars ..
  251. LOGICAL BLK22, INITQ, INITZ, LQUERY, WANTQ, WANTZ
  252. CHARACTER*1 COMPQ2, COMPZ2
  253. INTEGER COLA, I, IERR, J, J0, JCOL, JJ, JROW, K,
  254. $ KACC22, LEN, LWKOPT, N2NB, NB, NBLST, NBMIN,
  255. $ NH, NNB, NX, PPW, PPWO, PW, TOP, TOPQ
  256. DOUBLE PRECISION C
  257. COMPLEX*16 C1, C2, CTEMP, S, S1, S2, TEMP, TEMP1, TEMP2,
  258. $ TEMP3
  259. * ..
  260. * .. External Functions ..
  261. LOGICAL LSAME
  262. INTEGER ILAENV
  263. EXTERNAL ILAENV, LSAME
  264. * ..
  265. * .. External Subroutines ..
  266. EXTERNAL ZGGHRD, ZLARTG, ZLASET, ZUNM22, ZROT, ZGEMM,
  267. $ ZGEMV, ZTRMV, ZLACPY, XERBLA
  268. * ..
  269. * .. Intrinsic Functions ..
  270. INTRINSIC DBLE, DCMPLX, DCONJG, MAX
  271. * ..
  272. * .. Executable Statements ..
  273. *
  274. * Decode and test the input parameters.
  275. *
  276. INFO = 0
  277. NB = ILAENV( 1, 'ZGGHD3', ' ', N, ILO, IHI, -1 )
  278. LWKOPT = MAX( 6*N*NB, 1 )
  279. WORK( 1 ) = DCMPLX( LWKOPT )
  280. INITQ = LSAME( COMPQ, 'I' )
  281. WANTQ = INITQ .OR. LSAME( COMPQ, 'V' )
  282. INITZ = LSAME( COMPZ, 'I' )
  283. WANTZ = INITZ .OR. LSAME( COMPZ, 'V' )
  284. LQUERY = ( LWORK.EQ.-1 )
  285. *
  286. IF( .NOT.LSAME( COMPQ, 'N' ) .AND. .NOT.WANTQ ) THEN
  287. INFO = -1
  288. ELSE IF( .NOT.LSAME( COMPZ, 'N' ) .AND. .NOT.WANTZ ) THEN
  289. INFO = -2
  290. ELSE IF( N.LT.0 ) THEN
  291. INFO = -3
  292. ELSE IF( ILO.LT.1 ) THEN
  293. INFO = -4
  294. ELSE IF( IHI.GT.N .OR. IHI.LT.ILO-1 ) THEN
  295. INFO = -5
  296. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  297. INFO = -7
  298. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  299. INFO = -9
  300. ELSE IF( ( WANTQ .AND. LDQ.LT.N ) .OR. LDQ.LT.1 ) THEN
  301. INFO = -11
  302. ELSE IF( ( WANTZ .AND. LDZ.LT.N ) .OR. LDZ.LT.1 ) THEN
  303. INFO = -13
  304. ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN
  305. INFO = -15
  306. END IF
  307. IF( INFO.NE.0 ) THEN
  308. CALL XERBLA( 'ZGGHD3', -INFO )
  309. RETURN
  310. ELSE IF( LQUERY ) THEN
  311. RETURN
  312. END IF
  313. *
  314. * Initialize Q and Z if desired.
  315. *
  316. IF( INITQ )
  317. $ CALL ZLASET( 'All', N, N, CZERO, CONE, Q, LDQ )
  318. IF( INITZ )
  319. $ CALL ZLASET( 'All', N, N, CZERO, CONE, Z, LDZ )
  320. *
  321. * Zero out lower triangle of B.
  322. *
  323. IF( N.GT.1 )
  324. $ CALL ZLASET( 'Lower', N-1, N-1, CZERO, CZERO, B(2, 1), LDB )
  325. *
  326. * Quick return if possible
  327. *
  328. NH = IHI - ILO + 1
  329. IF( NH.LE.1 ) THEN
  330. WORK( 1 ) = CONE
  331. RETURN
  332. END IF
  333. *
  334. * Determine the blocksize.
  335. *
  336. NBMIN = ILAENV( 2, 'ZGGHD3', ' ', N, ILO, IHI, -1 )
  337. IF( NB.GT.1 .AND. NB.LT.NH ) THEN
  338. *
  339. * Determine when to use unblocked instead of blocked code.
  340. *
  341. NX = MAX( NB, ILAENV( 3, 'ZGGHD3', ' ', N, ILO, IHI, -1 ) )
  342. IF( NX.LT.NH ) THEN
  343. *
  344. * Determine if workspace is large enough for blocked code.
  345. *
  346. IF( LWORK.LT.LWKOPT ) THEN
  347. *
  348. * Not enough workspace to use optimal NB: determine the
  349. * minimum value of NB, and reduce NB or force use of
  350. * unblocked code.
  351. *
  352. NBMIN = MAX( 2, ILAENV( 2, 'ZGGHD3', ' ', N, ILO, IHI,
  353. $ -1 ) )
  354. IF( LWORK.GE.6*N*NBMIN ) THEN
  355. NB = LWORK / ( 6*N )
  356. ELSE
  357. NB = 1
  358. END IF
  359. END IF
  360. END IF
  361. END IF
  362. *
  363. IF( NB.LT.NBMIN .OR. NB.GE.NH ) THEN
  364. *
  365. * Use unblocked code below
  366. *
  367. JCOL = ILO
  368. *
  369. ELSE
  370. *
  371. * Use blocked code
  372. *
  373. KACC22 = ILAENV( 16, 'ZGGHD3', ' ', N, ILO, IHI, -1 )
  374. BLK22 = KACC22.EQ.2
  375. DO JCOL = ILO, IHI-2, NB
  376. NNB = MIN( NB, IHI-JCOL-1 )
  377. *
  378. * Initialize small unitary factors that will hold the
  379. * accumulated Givens rotations in workspace.
  380. * N2NB denotes the number of 2*NNB-by-2*NNB factors
  381. * NBLST denotes the (possibly smaller) order of the last
  382. * factor.
  383. *
  384. N2NB = ( IHI-JCOL-1 ) / NNB - 1
  385. NBLST = IHI - JCOL - N2NB*NNB
  386. CALL ZLASET( 'All', NBLST, NBLST, CZERO, CONE, WORK, NBLST )
  387. PW = NBLST * NBLST + 1
  388. DO I = 1, N2NB
  389. CALL ZLASET( 'All', 2*NNB, 2*NNB, CZERO, CONE,
  390. $ WORK( PW ), 2*NNB )
  391. PW = PW + 4*NNB*NNB
  392. END DO
  393. *
  394. * Reduce columns JCOL:JCOL+NNB-1 of A to Hessenberg form.
  395. *
  396. DO J = JCOL, JCOL+NNB-1
  397. *
  398. * Reduce Jth column of A. Store cosines and sines in Jth
  399. * column of A and B, respectively.
  400. *
  401. DO I = IHI, J+2, -1
  402. TEMP = A( I-1, J )
  403. CALL ZLARTG( TEMP, A( I, J ), C, S, A( I-1, J ) )
  404. A( I, J ) = DCMPLX( C )
  405. B( I, J ) = S
  406. END DO
  407. *
  408. * Accumulate Givens rotations into workspace array.
  409. *
  410. PPW = ( NBLST + 1 )*( NBLST - 2 ) - J + JCOL + 1
  411. LEN = 2 + J - JCOL
  412. JROW = J + N2NB*NNB + 2
  413. DO I = IHI, JROW, -1
  414. CTEMP = A( I, J )
  415. S = B( I, J )
  416. DO JJ = PPW, PPW+LEN-1
  417. TEMP = WORK( JJ + NBLST )
  418. WORK( JJ + NBLST ) = CTEMP*TEMP - S*WORK( JJ )
  419. WORK( JJ ) = DCONJG( S )*TEMP + CTEMP*WORK( JJ )
  420. END DO
  421. LEN = LEN + 1
  422. PPW = PPW - NBLST - 1
  423. END DO
  424. *
  425. PPWO = NBLST*NBLST + ( NNB+J-JCOL-1 )*2*NNB + NNB
  426. J0 = JROW - NNB
  427. DO JROW = J0, J+2, -NNB
  428. PPW = PPWO
  429. LEN = 2 + J - JCOL
  430. DO I = JROW+NNB-1, JROW, -1
  431. CTEMP = A( I, J )
  432. S = B( I, J )
  433. DO JJ = PPW, PPW+LEN-1
  434. TEMP = WORK( JJ + 2*NNB )
  435. WORK( JJ + 2*NNB ) = CTEMP*TEMP - S*WORK( JJ )
  436. WORK( JJ ) = DCONJG( S )*TEMP + CTEMP*WORK( JJ )
  437. END DO
  438. LEN = LEN + 1
  439. PPW = PPW - 2*NNB - 1
  440. END DO
  441. PPWO = PPWO + 4*NNB*NNB
  442. END DO
  443. *
  444. * TOP denotes the number of top rows in A and B that will
  445. * not be updated during the next steps.
  446. *
  447. IF( JCOL.LE.2 ) THEN
  448. TOP = 0
  449. ELSE
  450. TOP = JCOL
  451. END IF
  452. *
  453. * Propagate transformations through B and replace stored
  454. * left sines/cosines by right sines/cosines.
  455. *
  456. DO JJ = N, J+1, -1
  457. *
  458. * Update JJth column of B.
  459. *
  460. DO I = MIN( JJ+1, IHI ), J+2, -1
  461. CTEMP = A( I, J )
  462. S = B( I, J )
  463. TEMP = B( I, JJ )
  464. B( I, JJ ) = CTEMP*TEMP - DCONJG( S )*B( I-1, JJ )
  465. B( I-1, JJ ) = S*TEMP + CTEMP*B( I-1, JJ )
  466. END DO
  467. *
  468. * Annihilate B( JJ+1, JJ ).
  469. *
  470. IF( JJ.LT.IHI ) THEN
  471. TEMP = B( JJ+1, JJ+1 )
  472. CALL ZLARTG( TEMP, B( JJ+1, JJ ), C, S,
  473. $ B( JJ+1, JJ+1 ) )
  474. B( JJ+1, JJ ) = CZERO
  475. CALL ZROT( JJ-TOP, B( TOP+1, JJ+1 ), 1,
  476. $ B( TOP+1, JJ ), 1, C, S )
  477. A( JJ+1, J ) = DCMPLX( C )
  478. B( JJ+1, J ) = -DCONJG( S )
  479. END IF
  480. END DO
  481. *
  482. * Update A by transformations from right.
  483. *
  484. JJ = MOD( IHI-J-1, 3 )
  485. DO I = IHI-J-3, JJ+1, -3
  486. CTEMP = A( J+1+I, J )
  487. S = -B( J+1+I, J )
  488. C1 = A( J+2+I, J )
  489. S1 = -B( J+2+I, J )
  490. C2 = A( J+3+I, J )
  491. S2 = -B( J+3+I, J )
  492. *
  493. DO K = TOP+1, IHI
  494. TEMP = A( K, J+I )
  495. TEMP1 = A( K, J+I+1 )
  496. TEMP2 = A( K, J+I+2 )
  497. TEMP3 = A( K, J+I+3 )
  498. A( K, J+I+3 ) = C2*TEMP3 + DCONJG( S2 )*TEMP2
  499. TEMP2 = -S2*TEMP3 + C2*TEMP2
  500. A( K, J+I+2 ) = C1*TEMP2 + DCONJG( S1 )*TEMP1
  501. TEMP1 = -S1*TEMP2 + C1*TEMP1
  502. A( K, J+I+1 ) = CTEMP*TEMP1 + DCONJG( S )*TEMP
  503. A( K, J+I ) = -S*TEMP1 + CTEMP*TEMP
  504. END DO
  505. END DO
  506. *
  507. IF( JJ.GT.0 ) THEN
  508. DO I = JJ, 1, -1
  509. C = DBLE( A( J+1+I, J ) )
  510. CALL ZROT( IHI-TOP, A( TOP+1, J+I+1 ), 1,
  511. $ A( TOP+1, J+I ), 1, C,
  512. $ -DCONJG( B( J+1+I, J ) ) )
  513. END DO
  514. END IF
  515. *
  516. * Update (J+1)th column of A by transformations from left.
  517. *
  518. IF ( J .LT. JCOL + NNB - 1 ) THEN
  519. LEN = 1 + J - JCOL
  520. *
  521. * Multiply with the trailing accumulated unitary
  522. * matrix, which takes the form
  523. *
  524. * [ U11 U12 ]
  525. * U = [ ],
  526. * [ U21 U22 ]
  527. *
  528. * where U21 is a LEN-by-LEN matrix and U12 is lower
  529. * triangular.
  530. *
  531. JROW = IHI - NBLST + 1
  532. CALL ZGEMV( 'Conjugate', NBLST, LEN, CONE, WORK,
  533. $ NBLST, A( JROW, J+1 ), 1, CZERO,
  534. $ WORK( PW ), 1 )
  535. PPW = PW + LEN
  536. DO I = JROW, JROW+NBLST-LEN-1
  537. WORK( PPW ) = A( I, J+1 )
  538. PPW = PPW + 1
  539. END DO
  540. CALL ZTRMV( 'Lower', 'Conjugate', 'Non-unit',
  541. $ NBLST-LEN, WORK( LEN*NBLST + 1 ), NBLST,
  542. $ WORK( PW+LEN ), 1 )
  543. CALL ZGEMV( 'Conjugate', LEN, NBLST-LEN, CONE,
  544. $ WORK( (LEN+1)*NBLST - LEN + 1 ), NBLST,
  545. $ A( JROW+NBLST-LEN, J+1 ), 1, CONE,
  546. $ WORK( PW+LEN ), 1 )
  547. PPW = PW
  548. DO I = JROW, JROW+NBLST-1
  549. A( I, J+1 ) = WORK( PPW )
  550. PPW = PPW + 1
  551. END DO
  552. *
  553. * Multiply with the other accumulated unitary
  554. * matrices, which take the form
  555. *
  556. * [ U11 U12 0 ]
  557. * [ ]
  558. * U = [ U21 U22 0 ],
  559. * [ ]
  560. * [ 0 0 I ]
  561. *
  562. * where I denotes the (NNB-LEN)-by-(NNB-LEN) identity
  563. * matrix, U21 is a LEN-by-LEN upper triangular matrix
  564. * and U12 is an NNB-by-NNB lower triangular matrix.
  565. *
  566. PPWO = 1 + NBLST*NBLST
  567. J0 = JROW - NNB
  568. DO JROW = J0, JCOL+1, -NNB
  569. PPW = PW + LEN
  570. DO I = JROW, JROW+NNB-1
  571. WORK( PPW ) = A( I, J+1 )
  572. PPW = PPW + 1
  573. END DO
  574. PPW = PW
  575. DO I = JROW+NNB, JROW+NNB+LEN-1
  576. WORK( PPW ) = A( I, J+1 )
  577. PPW = PPW + 1
  578. END DO
  579. CALL ZTRMV( 'Upper', 'Conjugate', 'Non-unit', LEN,
  580. $ WORK( PPWO + NNB ), 2*NNB, WORK( PW ),
  581. $ 1 )
  582. CALL ZTRMV( 'Lower', 'Conjugate', 'Non-unit', NNB,
  583. $ WORK( PPWO + 2*LEN*NNB ),
  584. $ 2*NNB, WORK( PW + LEN ), 1 )
  585. CALL ZGEMV( 'Conjugate', NNB, LEN, CONE,
  586. $ WORK( PPWO ), 2*NNB, A( JROW, J+1 ), 1,
  587. $ CONE, WORK( PW ), 1 )
  588. CALL ZGEMV( 'Conjugate', LEN, NNB, CONE,
  589. $ WORK( PPWO + 2*LEN*NNB + NNB ), 2*NNB,
  590. $ A( JROW+NNB, J+1 ), 1, CONE,
  591. $ WORK( PW+LEN ), 1 )
  592. PPW = PW
  593. DO I = JROW, JROW+LEN+NNB-1
  594. A( I, J+1 ) = WORK( PPW )
  595. PPW = PPW + 1
  596. END DO
  597. PPWO = PPWO + 4*NNB*NNB
  598. END DO
  599. END IF
  600. END DO
  601. *
  602. * Apply accumulated unitary matrices to A.
  603. *
  604. COLA = N - JCOL - NNB + 1
  605. J = IHI - NBLST + 1
  606. CALL ZGEMM( 'Conjugate', 'No Transpose', NBLST,
  607. $ COLA, NBLST, CONE, WORK, NBLST,
  608. $ A( J, JCOL+NNB ), LDA, CZERO, WORK( PW ),
  609. $ NBLST )
  610. CALL ZLACPY( 'All', NBLST, COLA, WORK( PW ), NBLST,
  611. $ A( J, JCOL+NNB ), LDA )
  612. PPWO = NBLST*NBLST + 1
  613. J0 = J - NNB
  614. DO J = J0, JCOL+1, -NNB
  615. IF ( BLK22 ) THEN
  616. *
  617. * Exploit the structure of
  618. *
  619. * [ U11 U12 ]
  620. * U = [ ]
  621. * [ U21 U22 ],
  622. *
  623. * where all blocks are NNB-by-NNB, U21 is upper
  624. * triangular and U12 is lower triangular.
  625. *
  626. CALL ZUNM22( 'Left', 'Conjugate', 2*NNB, COLA, NNB,
  627. $ NNB, WORK( PPWO ), 2*NNB,
  628. $ A( J, JCOL+NNB ), LDA, WORK( PW ),
  629. $ LWORK-PW+1, IERR )
  630. ELSE
  631. *
  632. * Ignore the structure of U.
  633. *
  634. CALL ZGEMM( 'Conjugate', 'No Transpose', 2*NNB,
  635. $ COLA, 2*NNB, CONE, WORK( PPWO ), 2*NNB,
  636. $ A( J, JCOL+NNB ), LDA, CZERO, WORK( PW ),
  637. $ 2*NNB )
  638. CALL ZLACPY( 'All', 2*NNB, COLA, WORK( PW ), 2*NNB,
  639. $ A( J, JCOL+NNB ), LDA )
  640. END IF
  641. PPWO = PPWO + 4*NNB*NNB
  642. END DO
  643. *
  644. * Apply accumulated unitary matrices to Q.
  645. *
  646. IF( WANTQ ) THEN
  647. J = IHI - NBLST + 1
  648. IF ( INITQ ) THEN
  649. TOPQ = MAX( 2, J - JCOL + 1 )
  650. NH = IHI - TOPQ + 1
  651. ELSE
  652. TOPQ = 1
  653. NH = N
  654. END IF
  655. CALL ZGEMM( 'No Transpose', 'No Transpose', NH,
  656. $ NBLST, NBLST, CONE, Q( TOPQ, J ), LDQ,
  657. $ WORK, NBLST, CZERO, WORK( PW ), NH )
  658. CALL ZLACPY( 'All', NH, NBLST, WORK( PW ), NH,
  659. $ Q( TOPQ, J ), LDQ )
  660. PPWO = NBLST*NBLST + 1
  661. J0 = J - NNB
  662. DO J = J0, JCOL+1, -NNB
  663. IF ( INITQ ) THEN
  664. TOPQ = MAX( 2, J - JCOL + 1 )
  665. NH = IHI - TOPQ + 1
  666. END IF
  667. IF ( BLK22 ) THEN
  668. *
  669. * Exploit the structure of U.
  670. *
  671. CALL ZUNM22( 'Right', 'No Transpose', NH, 2*NNB,
  672. $ NNB, NNB, WORK( PPWO ), 2*NNB,
  673. $ Q( TOPQ, J ), LDQ, WORK( PW ),
  674. $ LWORK-PW+1, IERR )
  675. ELSE
  676. *
  677. * Ignore the structure of U.
  678. *
  679. CALL ZGEMM( 'No Transpose', 'No Transpose', NH,
  680. $ 2*NNB, 2*NNB, CONE, Q( TOPQ, J ), LDQ,
  681. $ WORK( PPWO ), 2*NNB, CZERO, WORK( PW ),
  682. $ NH )
  683. CALL ZLACPY( 'All', NH, 2*NNB, WORK( PW ), NH,
  684. $ Q( TOPQ, J ), LDQ )
  685. END IF
  686. PPWO = PPWO + 4*NNB*NNB
  687. END DO
  688. END IF
  689. *
  690. * Accumulate right Givens rotations if required.
  691. *
  692. IF ( WANTZ .OR. TOP.GT.0 ) THEN
  693. *
  694. * Initialize small unitary factors that will hold the
  695. * accumulated Givens rotations in workspace.
  696. *
  697. CALL ZLASET( 'All', NBLST, NBLST, CZERO, CONE, WORK,
  698. $ NBLST )
  699. PW = NBLST * NBLST + 1
  700. DO I = 1, N2NB
  701. CALL ZLASET( 'All', 2*NNB, 2*NNB, CZERO, CONE,
  702. $ WORK( PW ), 2*NNB )
  703. PW = PW + 4*NNB*NNB
  704. END DO
  705. *
  706. * Accumulate Givens rotations into workspace array.
  707. *
  708. DO J = JCOL, JCOL+NNB-1
  709. PPW = ( NBLST + 1 )*( NBLST - 2 ) - J + JCOL + 1
  710. LEN = 2 + J - JCOL
  711. JROW = J + N2NB*NNB + 2
  712. DO I = IHI, JROW, -1
  713. CTEMP = A( I, J )
  714. A( I, J ) = CZERO
  715. S = B( I, J )
  716. B( I, J ) = CZERO
  717. DO JJ = PPW, PPW+LEN-1
  718. TEMP = WORK( JJ + NBLST )
  719. WORK( JJ + NBLST ) = CTEMP*TEMP -
  720. $ DCONJG( S )*WORK( JJ )
  721. WORK( JJ ) = S*TEMP + CTEMP*WORK( JJ )
  722. END DO
  723. LEN = LEN + 1
  724. PPW = PPW - NBLST - 1
  725. END DO
  726. *
  727. PPWO = NBLST*NBLST + ( NNB+J-JCOL-1 )*2*NNB + NNB
  728. J0 = JROW - NNB
  729. DO JROW = J0, J+2, -NNB
  730. PPW = PPWO
  731. LEN = 2 + J - JCOL
  732. DO I = JROW+NNB-1, JROW, -1
  733. CTEMP = A( I, J )
  734. A( I, J ) = CZERO
  735. S = B( I, J )
  736. B( I, J ) = CZERO
  737. DO JJ = PPW, PPW+LEN-1
  738. TEMP = WORK( JJ + 2*NNB )
  739. WORK( JJ + 2*NNB ) = CTEMP*TEMP -
  740. $ DCONJG( S )*WORK( JJ )
  741. WORK( JJ ) = S*TEMP + CTEMP*WORK( JJ )
  742. END DO
  743. LEN = LEN + 1
  744. PPW = PPW - 2*NNB - 1
  745. END DO
  746. PPWO = PPWO + 4*NNB*NNB
  747. END DO
  748. END DO
  749. ELSE
  750. *
  751. CALL ZLASET( 'Lower', IHI - JCOL - 1, NNB, CZERO, CZERO,
  752. $ A( JCOL + 2, JCOL ), LDA )
  753. CALL ZLASET( 'Lower', IHI - JCOL - 1, NNB, CZERO, CZERO,
  754. $ B( JCOL + 2, JCOL ), LDB )
  755. END IF
  756. *
  757. * Apply accumulated unitary matrices to A and B.
  758. *
  759. IF ( TOP.GT.0 ) THEN
  760. J = IHI - NBLST + 1
  761. CALL ZGEMM( 'No Transpose', 'No Transpose', TOP,
  762. $ NBLST, NBLST, CONE, A( 1, J ), LDA,
  763. $ WORK, NBLST, CZERO, WORK( PW ), TOP )
  764. CALL ZLACPY( 'All', TOP, NBLST, WORK( PW ), TOP,
  765. $ A( 1, J ), LDA )
  766. PPWO = NBLST*NBLST + 1
  767. J0 = J - NNB
  768. DO J = J0, JCOL+1, -NNB
  769. IF ( BLK22 ) THEN
  770. *
  771. * Exploit the structure of U.
  772. *
  773. CALL ZUNM22( 'Right', 'No Transpose', TOP, 2*NNB,
  774. $ NNB, NNB, WORK( PPWO ), 2*NNB,
  775. $ A( 1, J ), LDA, WORK( PW ),
  776. $ LWORK-PW+1, IERR )
  777. ELSE
  778. *
  779. * Ignore the structure of U.
  780. *
  781. CALL ZGEMM( 'No Transpose', 'No Transpose', TOP,
  782. $ 2*NNB, 2*NNB, CONE, A( 1, J ), LDA,
  783. $ WORK( PPWO ), 2*NNB, CZERO,
  784. $ WORK( PW ), TOP )
  785. CALL ZLACPY( 'All', TOP, 2*NNB, WORK( PW ), TOP,
  786. $ A( 1, J ), LDA )
  787. END IF
  788. PPWO = PPWO + 4*NNB*NNB
  789. END DO
  790. *
  791. J = IHI - NBLST + 1
  792. CALL ZGEMM( 'No Transpose', 'No Transpose', TOP,
  793. $ NBLST, NBLST, CONE, B( 1, J ), LDB,
  794. $ WORK, NBLST, CZERO, WORK( PW ), TOP )
  795. CALL ZLACPY( 'All', TOP, NBLST, WORK( PW ), TOP,
  796. $ B( 1, J ), LDB )
  797. PPWO = NBLST*NBLST + 1
  798. J0 = J - NNB
  799. DO J = J0, JCOL+1, -NNB
  800. IF ( BLK22 ) THEN
  801. *
  802. * Exploit the structure of U.
  803. *
  804. CALL ZUNM22( 'Right', 'No Transpose', TOP, 2*NNB,
  805. $ NNB, NNB, WORK( PPWO ), 2*NNB,
  806. $ B( 1, J ), LDB, WORK( PW ),
  807. $ LWORK-PW+1, IERR )
  808. ELSE
  809. *
  810. * Ignore the structure of U.
  811. *
  812. CALL ZGEMM( 'No Transpose', 'No Transpose', TOP,
  813. $ 2*NNB, 2*NNB, CONE, B( 1, J ), LDB,
  814. $ WORK( PPWO ), 2*NNB, CZERO,
  815. $ WORK( PW ), TOP )
  816. CALL ZLACPY( 'All', TOP, 2*NNB, WORK( PW ), TOP,
  817. $ B( 1, J ), LDB )
  818. END IF
  819. PPWO = PPWO + 4*NNB*NNB
  820. END DO
  821. END IF
  822. *
  823. * Apply accumulated unitary matrices to Z.
  824. *
  825. IF( WANTZ ) THEN
  826. J = IHI - NBLST + 1
  827. IF ( INITQ ) THEN
  828. TOPQ = MAX( 2, J - JCOL + 1 )
  829. NH = IHI - TOPQ + 1
  830. ELSE
  831. TOPQ = 1
  832. NH = N
  833. END IF
  834. CALL ZGEMM( 'No Transpose', 'No Transpose', NH,
  835. $ NBLST, NBLST, CONE, Z( TOPQ, J ), LDZ,
  836. $ WORK, NBLST, CZERO, WORK( PW ), NH )
  837. CALL ZLACPY( 'All', NH, NBLST, WORK( PW ), NH,
  838. $ Z( TOPQ, J ), LDZ )
  839. PPWO = NBLST*NBLST + 1
  840. J0 = J - NNB
  841. DO J = J0, JCOL+1, -NNB
  842. IF ( INITQ ) THEN
  843. TOPQ = MAX( 2, J - JCOL + 1 )
  844. NH = IHI - TOPQ + 1
  845. END IF
  846. IF ( BLK22 ) THEN
  847. *
  848. * Exploit the structure of U.
  849. *
  850. CALL ZUNM22( 'Right', 'No Transpose', NH, 2*NNB,
  851. $ NNB, NNB, WORK( PPWO ), 2*NNB,
  852. $ Z( TOPQ, J ), LDZ, WORK( PW ),
  853. $ LWORK-PW+1, IERR )
  854. ELSE
  855. *
  856. * Ignore the structure of U.
  857. *
  858. CALL ZGEMM( 'No Transpose', 'No Transpose', NH,
  859. $ 2*NNB, 2*NNB, CONE, Z( TOPQ, J ), LDZ,
  860. $ WORK( PPWO ), 2*NNB, CZERO, WORK( PW ),
  861. $ NH )
  862. CALL ZLACPY( 'All', NH, 2*NNB, WORK( PW ), NH,
  863. $ Z( TOPQ, J ), LDZ )
  864. END IF
  865. PPWO = PPWO + 4*NNB*NNB
  866. END DO
  867. END IF
  868. END DO
  869. END IF
  870. *
  871. * Use unblocked code to reduce the rest of the matrix
  872. * Avoid re-initialization of modified Q and Z.
  873. *
  874. COMPQ2 = COMPQ
  875. COMPZ2 = COMPZ
  876. IF ( JCOL.NE.ILO ) THEN
  877. IF ( WANTQ )
  878. $ COMPQ2 = 'V'
  879. IF ( WANTZ )
  880. $ COMPZ2 = 'V'
  881. END IF
  882. *
  883. IF ( JCOL.LT.IHI )
  884. $ CALL ZGGHRD( COMPQ2, COMPZ2, N, JCOL, IHI, A, LDA, B, LDB, Q,
  885. $ LDQ, Z, LDZ, IERR )
  886. WORK( 1 ) = DCMPLX( LWKOPT )
  887. *
  888. RETURN
  889. *
  890. * End of ZGGHD3
  891. *
  892. END