You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zpst01.f 8.7 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322
  1. *> \brief \b ZPST01
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE ZPST01( UPLO, N, A, LDA, AFAC, LDAFAC, PERM, LDPERM,
  12. * PIV, RWORK, RESID, RANK )
  13. *
  14. * .. Scalar Arguments ..
  15. * DOUBLE PRECISION RESID
  16. * INTEGER LDA, LDAFAC, LDPERM, N, RANK
  17. * CHARACTER UPLO
  18. * ..
  19. * .. Array Arguments ..
  20. * COMPLEX*16 A( LDA, * ), AFAC( LDAFAC, * ),
  21. * $ PERM( LDPERM, * )
  22. * DOUBLE PRECISION RWORK( * )
  23. * INTEGER PIV( * )
  24. * ..
  25. *
  26. *
  27. *> \par Purpose:
  28. * =============
  29. *>
  30. *> \verbatim
  31. *>
  32. *> ZPST01 reconstructs an Hermitian positive semidefinite matrix A
  33. *> from its L or U factors and the permutation matrix P and computes
  34. *> the residual
  35. *> norm( P*L*L'*P' - A ) / ( N * norm(A) * EPS ) or
  36. *> norm( P*U'*U*P' - A ) / ( N * norm(A) * EPS ),
  37. *> where EPS is the machine epsilon, L' is the conjugate transpose of L,
  38. *> and U' is the conjugate transpose of U.
  39. *> \endverbatim
  40. *
  41. * Arguments:
  42. * ==========
  43. *
  44. *> \param[in] UPLO
  45. *> \verbatim
  46. *> UPLO is CHARACTER*1
  47. *> Specifies whether the upper or lower triangular part of the
  48. *> Hermitian matrix A is stored:
  49. *> = 'U': Upper triangular
  50. *> = 'L': Lower triangular
  51. *> \endverbatim
  52. *>
  53. *> \param[in] N
  54. *> \verbatim
  55. *> N is INTEGER
  56. *> The number of rows and columns of the matrix A. N >= 0.
  57. *> \endverbatim
  58. *>
  59. *> \param[in] A
  60. *> \verbatim
  61. *> A is COMPLEX*16 array, dimension (LDA,N)
  62. *> The original Hermitian matrix A.
  63. *> \endverbatim
  64. *>
  65. *> \param[in] LDA
  66. *> \verbatim
  67. *> LDA is INTEGER
  68. *> The leading dimension of the array A. LDA >= max(1,N)
  69. *> \endverbatim
  70. *>
  71. *> \param[in] AFAC
  72. *> \verbatim
  73. *> AFAC is COMPLEX*16 array, dimension (LDAFAC,N)
  74. *> The factor L or U from the L*L' or U'*U
  75. *> factorization of A.
  76. *> \endverbatim
  77. *>
  78. *> \param[in] LDAFAC
  79. *> \verbatim
  80. *> LDAFAC is INTEGER
  81. *> The leading dimension of the array AFAC. LDAFAC >= max(1,N).
  82. *> \endverbatim
  83. *>
  84. *> \param[out] PERM
  85. *> \verbatim
  86. *> PERM is COMPLEX*16 array, dimension (LDPERM,N)
  87. *> Overwritten with the reconstructed matrix, and then with the
  88. *> difference P*L*L'*P' - A (or P*U'*U*P' - A)
  89. *> \endverbatim
  90. *>
  91. *> \param[in] LDPERM
  92. *> \verbatim
  93. *> LDPERM is INTEGER
  94. *> The leading dimension of the array PERM.
  95. *> LDAPERM >= max(1,N).
  96. *> \endverbatim
  97. *>
  98. *> \param[in] PIV
  99. *> \verbatim
  100. *> PIV is INTEGER array, dimension (N)
  101. *> PIV is such that the nonzero entries are
  102. *> P( PIV( K ), K ) = 1.
  103. *> \endverbatim
  104. *>
  105. *> \param[out] RWORK
  106. *> \verbatim
  107. *> RWORK is DOUBLE PRECISION array, dimension (N)
  108. *> \endverbatim
  109. *>
  110. *> \param[out] RESID
  111. *> \verbatim
  112. *> RESID is DOUBLE PRECISION
  113. *> If UPLO = 'L', norm(L*L' - A) / ( N * norm(A) * EPS )
  114. *> If UPLO = 'U', norm(U'*U - A) / ( N * norm(A) * EPS )
  115. *> \endverbatim
  116. *>
  117. *> \param[in] RANK
  118. *> \verbatim
  119. *> RANK is INTEGER
  120. *> number of nonzero singular values of A.
  121. *> \endverbatim
  122. *
  123. * Authors:
  124. * ========
  125. *
  126. *> \author Univ. of Tennessee
  127. *> \author Univ. of California Berkeley
  128. *> \author Univ. of Colorado Denver
  129. *> \author NAG Ltd.
  130. *
  131. *> \ingroup complex16_lin
  132. *
  133. * =====================================================================
  134. SUBROUTINE ZPST01( UPLO, N, A, LDA, AFAC, LDAFAC, PERM, LDPERM,
  135. $ PIV, RWORK, RESID, RANK )
  136. *
  137. * -- LAPACK test routine --
  138. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  139. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  140. *
  141. * .. Scalar Arguments ..
  142. DOUBLE PRECISION RESID
  143. INTEGER LDA, LDAFAC, LDPERM, N, RANK
  144. CHARACTER UPLO
  145. * ..
  146. * .. Array Arguments ..
  147. COMPLEX*16 A( LDA, * ), AFAC( LDAFAC, * ),
  148. $ PERM( LDPERM, * )
  149. DOUBLE PRECISION RWORK( * )
  150. INTEGER PIV( * )
  151. * ..
  152. *
  153. * =====================================================================
  154. *
  155. * .. Parameters ..
  156. DOUBLE PRECISION ZERO, ONE
  157. PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  158. COMPLEX*16 CZERO
  159. PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ) )
  160. * ..
  161. * .. Local Scalars ..
  162. COMPLEX*16 TC
  163. DOUBLE PRECISION ANORM, EPS, TR
  164. INTEGER I, J, K
  165. * ..
  166. * .. External Functions ..
  167. COMPLEX*16 ZDOTC
  168. DOUBLE PRECISION DLAMCH, ZLANHE
  169. LOGICAL LSAME
  170. EXTERNAL ZDOTC, DLAMCH, ZLANHE, LSAME
  171. * ..
  172. * .. External Subroutines ..
  173. EXTERNAL ZHER, ZSCAL, ZTRMV
  174. * ..
  175. * .. Intrinsic Functions ..
  176. INTRINSIC DBLE, DCONJG, DIMAG
  177. * ..
  178. * .. Executable Statements ..
  179. *
  180. * Quick exit if N = 0.
  181. *
  182. IF( N.LE.0 ) THEN
  183. RESID = ZERO
  184. RETURN
  185. END IF
  186. *
  187. * Exit with RESID = 1/EPS if ANORM = 0.
  188. *
  189. EPS = DLAMCH( 'Epsilon' )
  190. ANORM = ZLANHE( '1', UPLO, N, A, LDA, RWORK )
  191. IF( ANORM.LE.ZERO ) THEN
  192. RESID = ONE / EPS
  193. RETURN
  194. END IF
  195. *
  196. * Check the imaginary parts of the diagonal elements and return with
  197. * an error code if any are nonzero.
  198. *
  199. DO 100 J = 1, N
  200. IF( DIMAG( AFAC( J, J ) ).NE.ZERO ) THEN
  201. RESID = ONE / EPS
  202. RETURN
  203. END IF
  204. 100 CONTINUE
  205. *
  206. * Compute the product U'*U, overwriting U.
  207. *
  208. IF( LSAME( UPLO, 'U' ) ) THEN
  209. *
  210. IF( RANK.LT.N ) THEN
  211. DO 120 J = RANK + 1, N
  212. DO 110 I = RANK + 1, J
  213. AFAC( I, J ) = CZERO
  214. 110 CONTINUE
  215. 120 CONTINUE
  216. END IF
  217. *
  218. DO 130 K = N, 1, -1
  219. *
  220. * Compute the (K,K) element of the result.
  221. *
  222. TR = DBLE( ZDOTC( K, AFAC( 1, K ), 1, AFAC( 1, K ), 1 ) )
  223. AFAC( K, K ) = TR
  224. *
  225. * Compute the rest of column K.
  226. *
  227. CALL ZTRMV( 'Upper', 'Conjugate', 'Non-unit', K-1, AFAC,
  228. $ LDAFAC, AFAC( 1, K ), 1 )
  229. *
  230. 130 CONTINUE
  231. *
  232. * Compute the product L*L', overwriting L.
  233. *
  234. ELSE
  235. *
  236. IF( RANK.LT.N ) THEN
  237. DO 150 J = RANK + 1, N
  238. DO 140 I = J, N
  239. AFAC( I, J ) = CZERO
  240. 140 CONTINUE
  241. 150 CONTINUE
  242. END IF
  243. *
  244. DO 160 K = N, 1, -1
  245. * Add a multiple of column K of the factor L to each of
  246. * columns K+1 through N.
  247. *
  248. IF( K+1.LE.N )
  249. $ CALL ZHER( 'Lower', N-K, ONE, AFAC( K+1, K ), 1,
  250. $ AFAC( K+1, K+1 ), LDAFAC )
  251. *
  252. * Scale column K by the diagonal element.
  253. *
  254. TC = AFAC( K, K )
  255. CALL ZSCAL( N-K+1, TC, AFAC( K, K ), 1 )
  256. 160 CONTINUE
  257. *
  258. END IF
  259. *
  260. * Form P*L*L'*P' or P*U'*U*P'
  261. *
  262. IF( LSAME( UPLO, 'U' ) ) THEN
  263. *
  264. DO 180 J = 1, N
  265. DO 170 I = 1, N
  266. IF( PIV( I ).LE.PIV( J ) ) THEN
  267. IF( I.LE.J ) THEN
  268. PERM( PIV( I ), PIV( J ) ) = AFAC( I, J )
  269. ELSE
  270. PERM( PIV( I ), PIV( J ) ) = DCONJG( AFAC( J, I ) )
  271. END IF
  272. END IF
  273. 170 CONTINUE
  274. 180 CONTINUE
  275. *
  276. *
  277. ELSE
  278. *
  279. DO 200 J = 1, N
  280. DO 190 I = 1, N
  281. IF( PIV( I ).GE.PIV( J ) ) THEN
  282. IF( I.GE.J ) THEN
  283. PERM( PIV( I ), PIV( J ) ) = AFAC( I, J )
  284. ELSE
  285. PERM( PIV( I ), PIV( J ) ) = DCONJG( AFAC( J, I ) )
  286. END IF
  287. END IF
  288. 190 CONTINUE
  289. 200 CONTINUE
  290. *
  291. END IF
  292. *
  293. * Compute the difference P*L*L'*P' - A (or P*U'*U*P' - A).
  294. *
  295. IF( LSAME( UPLO, 'U' ) ) THEN
  296. DO 220 J = 1, N
  297. DO 210 I = 1, J - 1
  298. PERM( I, J ) = PERM( I, J ) - A( I, J )
  299. 210 CONTINUE
  300. PERM( J, J ) = PERM( J, J ) - DBLE( A( J, J ) )
  301. 220 CONTINUE
  302. ELSE
  303. DO 240 J = 1, N
  304. PERM( J, J ) = PERM( J, J ) - DBLE( A( J, J ) )
  305. DO 230 I = J + 1, N
  306. PERM( I, J ) = PERM( I, J ) - A( I, J )
  307. 230 CONTINUE
  308. 240 CONTINUE
  309. END IF
  310. *
  311. * Compute norm( P*L*L'P - A ) / ( N * norm(A) * EPS ), or
  312. * ( P*U'*U*P' - A )/ ( N * norm(A) * EPS ).
  313. *
  314. RESID = ZLANHE( '1', UPLO, N, PERM, LDAFAC, RWORK )
  315. *
  316. RESID = ( ( RESID / DBLE( N ) ) / ANORM ) / EPS
  317. *
  318. RETURN
  319. *
  320. * End of ZPST01
  321. *
  322. END