You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ddrvsg.f 47 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307
  1. *> \brief \b DDRVSG
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE DDRVSG( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
  12. * NOUNIT, A, LDA, B, LDB, D, Z, LDZ, AB, BB, AP,
  13. * BP, WORK, NWORK, IWORK, LIWORK, RESULT, INFO )
  14. *
  15. * .. Scalar Arguments ..
  16. * INTEGER INFO, LDA, LDB, LDZ, LIWORK, NOUNIT, NSIZES,
  17. * $ NTYPES, NWORK
  18. * DOUBLE PRECISION THRESH
  19. * ..
  20. * .. Array Arguments ..
  21. * LOGICAL DOTYPE( * )
  22. * INTEGER ISEED( 4 ), IWORK( * ), NN( * )
  23. * DOUBLE PRECISION A( LDA, * ), AB( LDA, * ), AP( * ),
  24. * $ B( LDB, * ), BB( LDB, * ), BP( * ), D( * ),
  25. * $ RESULT( * ), WORK( * ), Z( LDZ, * )
  26. * ..
  27. *
  28. *
  29. *> \par Purpose:
  30. * =============
  31. *>
  32. *> \verbatim
  33. *>
  34. *> DDRVSG checks the real symmetric generalized eigenproblem
  35. *> drivers.
  36. *>
  37. *> DSYGV computes all eigenvalues and, optionally,
  38. *> eigenvectors of a real symmetric-definite generalized
  39. *> eigenproblem.
  40. *>
  41. *> DSYGVD computes all eigenvalues and, optionally,
  42. *> eigenvectors of a real symmetric-definite generalized
  43. *> eigenproblem using a divide and conquer algorithm.
  44. *>
  45. *> DSYGVX computes selected eigenvalues and, optionally,
  46. *> eigenvectors of a real symmetric-definite generalized
  47. *> eigenproblem.
  48. *>
  49. *> DSPGV computes all eigenvalues and, optionally,
  50. *> eigenvectors of a real symmetric-definite generalized
  51. *> eigenproblem in packed storage.
  52. *>
  53. *> DSPGVD computes all eigenvalues and, optionally,
  54. *> eigenvectors of a real symmetric-definite generalized
  55. *> eigenproblem in packed storage using a divide and
  56. *> conquer algorithm.
  57. *>
  58. *> DSPGVX computes selected eigenvalues and, optionally,
  59. *> eigenvectors of a real symmetric-definite generalized
  60. *> eigenproblem in packed storage.
  61. *>
  62. *> DSBGV computes all eigenvalues and, optionally,
  63. *> eigenvectors of a real symmetric-definite banded
  64. *> generalized eigenproblem.
  65. *>
  66. *> DSBGVD computes all eigenvalues and, optionally,
  67. *> eigenvectors of a real symmetric-definite banded
  68. *> generalized eigenproblem using a divide and conquer
  69. *> algorithm.
  70. *>
  71. *> DSBGVX computes selected eigenvalues and, optionally,
  72. *> eigenvectors of a real symmetric-definite banded
  73. *> generalized eigenproblem.
  74. *>
  75. *> When DDRVSG is called, a number of matrix "sizes" ("n's") and a
  76. *> number of matrix "types" are specified. For each size ("n")
  77. *> and each type of matrix, one matrix A of the given type will be
  78. *> generated; a random well-conditioned matrix B is also generated
  79. *> and the pair (A,B) is used to test the drivers.
  80. *>
  81. *> For each pair (A,B), the following tests are performed:
  82. *>
  83. *> (1) DSYGV with ITYPE = 1 and UPLO ='U':
  84. *>
  85. *> | A Z - B Z D | / ( |A| |Z| n ulp )
  86. *>
  87. *> (2) as (1) but calling DSPGV
  88. *> (3) as (1) but calling DSBGV
  89. *> (4) as (1) but with UPLO = 'L'
  90. *> (5) as (4) but calling DSPGV
  91. *> (6) as (4) but calling DSBGV
  92. *>
  93. *> (7) DSYGV with ITYPE = 2 and UPLO ='U':
  94. *>
  95. *> | A B Z - Z D | / ( |A| |Z| n ulp )
  96. *>
  97. *> (8) as (7) but calling DSPGV
  98. *> (9) as (7) but with UPLO = 'L'
  99. *> (10) as (9) but calling DSPGV
  100. *>
  101. *> (11) DSYGV with ITYPE = 3 and UPLO ='U':
  102. *>
  103. *> | B A Z - Z D | / ( |A| |Z| n ulp )
  104. *>
  105. *> (12) as (11) but calling DSPGV
  106. *> (13) as (11) but with UPLO = 'L'
  107. *> (14) as (13) but calling DSPGV
  108. *>
  109. *> DSYGVD, DSPGVD and DSBGVD performed the same 14 tests.
  110. *>
  111. *> DSYGVX, DSPGVX and DSBGVX performed the above 14 tests with
  112. *> the parameter RANGE = 'A', 'N' and 'I', respectively.
  113. *>
  114. *> The "sizes" are specified by an array NN(1:NSIZES); the value
  115. *> of each element NN(j) specifies one size.
  116. *> The "types" are specified by a logical array DOTYPE( 1:NTYPES );
  117. *> if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
  118. *> This type is used for the matrix A which has half-bandwidth KA.
  119. *> B is generated as a well-conditioned positive definite matrix
  120. *> with half-bandwidth KB (<= KA).
  121. *> Currently, the list of possible types for A is:
  122. *>
  123. *> (1) The zero matrix.
  124. *> (2) The identity matrix.
  125. *>
  126. *> (3) A diagonal matrix with evenly spaced entries
  127. *> 1, ..., ULP and random signs.
  128. *> (ULP = (first number larger than 1) - 1 )
  129. *> (4) A diagonal matrix with geometrically spaced entries
  130. *> 1, ..., ULP and random signs.
  131. *> (5) A diagonal matrix with "clustered" entries
  132. *> 1, ULP, ..., ULP and random signs.
  133. *>
  134. *> (6) Same as (4), but multiplied by SQRT( overflow threshold )
  135. *> (7) Same as (4), but multiplied by SQRT( underflow threshold )
  136. *>
  137. *> (8) A matrix of the form U* D U, where U is orthogonal and
  138. *> D has evenly spaced entries 1, ..., ULP with random signs
  139. *> on the diagonal.
  140. *>
  141. *> (9) A matrix of the form U* D U, where U is orthogonal and
  142. *> D has geometrically spaced entries 1, ..., ULP with random
  143. *> signs on the diagonal.
  144. *>
  145. *> (10) A matrix of the form U* D U, where U is orthogonal and
  146. *> D has "clustered" entries 1, ULP,..., ULP with random
  147. *> signs on the diagonal.
  148. *>
  149. *> (11) Same as (8), but multiplied by SQRT( overflow threshold )
  150. *> (12) Same as (8), but multiplied by SQRT( underflow threshold )
  151. *>
  152. *> (13) symmetric matrix with random entries chosen from (-1,1).
  153. *> (14) Same as (13), but multiplied by SQRT( overflow threshold )
  154. *> (15) Same as (13), but multiplied by SQRT( underflow threshold)
  155. *>
  156. *> (16) Same as (8), but with KA = 1 and KB = 1
  157. *> (17) Same as (8), but with KA = 2 and KB = 1
  158. *> (18) Same as (8), but with KA = 2 and KB = 2
  159. *> (19) Same as (8), but with KA = 3 and KB = 1
  160. *> (20) Same as (8), but with KA = 3 and KB = 2
  161. *> (21) Same as (8), but with KA = 3 and KB = 3
  162. *> \endverbatim
  163. *
  164. * Arguments:
  165. * ==========
  166. *
  167. *> \verbatim
  168. *> NSIZES INTEGER
  169. *> The number of sizes of matrices to use. If it is zero,
  170. *> DDRVSG does nothing. It must be at least zero.
  171. *> Not modified.
  172. *>
  173. *> NN INTEGER array, dimension (NSIZES)
  174. *> An array containing the sizes to be used for the matrices.
  175. *> Zero values will be skipped. The values must be at least
  176. *> zero.
  177. *> Not modified.
  178. *>
  179. *> NTYPES INTEGER
  180. *> The number of elements in DOTYPE. If it is zero, DDRVSG
  181. *> does nothing. It must be at least zero. If it is MAXTYP+1
  182. *> and NSIZES is 1, then an additional type, MAXTYP+1 is
  183. *> defined, which is to use whatever matrix is in A. This
  184. *> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
  185. *> DOTYPE(MAXTYP+1) is .TRUE. .
  186. *> Not modified.
  187. *>
  188. *> DOTYPE LOGICAL array, dimension (NTYPES)
  189. *> If DOTYPE(j) is .TRUE., then for each size in NN a
  190. *> matrix of that size and of type j will be generated.
  191. *> If NTYPES is smaller than the maximum number of types
  192. *> defined (PARAMETER MAXTYP), then types NTYPES+1 through
  193. *> MAXTYP will not be generated. If NTYPES is larger
  194. *> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
  195. *> will be ignored.
  196. *> Not modified.
  197. *>
  198. *> ISEED INTEGER array, dimension (4)
  199. *> On entry ISEED specifies the seed of the random number
  200. *> generator. The array elements should be between 0 and 4095;
  201. *> if not they will be reduced mod 4096. Also, ISEED(4) must
  202. *> be odd. The random number generator uses a linear
  203. *> congruential sequence limited to small integers, and so
  204. *> should produce machine independent random numbers. The
  205. *> values of ISEED are changed on exit, and can be used in the
  206. *> next call to DDRVSG to continue the same random number
  207. *> sequence.
  208. *> Modified.
  209. *>
  210. *> THRESH DOUBLE PRECISION
  211. *> A test will count as "failed" if the "error", computed as
  212. *> described above, exceeds THRESH. Note that the error
  213. *> is scaled to be O(1), so THRESH should be a reasonably
  214. *> small multiple of 1, e.g., 10 or 100. In particular,
  215. *> it should not depend on the precision (single vs. double)
  216. *> or the size of the matrix. It must be at least zero.
  217. *> Not modified.
  218. *>
  219. *> NOUNIT INTEGER
  220. *> The FORTRAN unit number for printing out error messages
  221. *> (e.g., if a routine returns IINFO not equal to 0.)
  222. *> Not modified.
  223. *>
  224. *> A DOUBLE PRECISION array, dimension (LDA , max(NN))
  225. *> Used to hold the matrix whose eigenvalues are to be
  226. *> computed. On exit, A contains the last matrix actually
  227. *> used.
  228. *> Modified.
  229. *>
  230. *> LDA INTEGER
  231. *> The leading dimension of A and AB. It must be at
  232. *> least 1 and at least max( NN ).
  233. *> Not modified.
  234. *>
  235. *> B DOUBLE PRECISION array, dimension (LDB , max(NN))
  236. *> Used to hold the symmetric positive definite matrix for
  237. *> the generailzed problem.
  238. *> On exit, B contains the last matrix actually
  239. *> used.
  240. *> Modified.
  241. *>
  242. *> LDB INTEGER
  243. *> The leading dimension of B and BB. It must be at
  244. *> least 1 and at least max( NN ).
  245. *> Not modified.
  246. *>
  247. *> D DOUBLE PRECISION array, dimension (max(NN))
  248. *> The eigenvalues of A. On exit, the eigenvalues in D
  249. *> correspond with the matrix in A.
  250. *> Modified.
  251. *>
  252. *> Z DOUBLE PRECISION array, dimension (LDZ, max(NN))
  253. *> The matrix of eigenvectors.
  254. *> Modified.
  255. *>
  256. *> LDZ INTEGER
  257. *> The leading dimension of Z. It must be at least 1 and
  258. *> at least max( NN ).
  259. *> Not modified.
  260. *>
  261. *> AB DOUBLE PRECISION array, dimension (LDA, max(NN))
  262. *> Workspace.
  263. *> Modified.
  264. *>
  265. *> BB DOUBLE PRECISION array, dimension (LDB, max(NN))
  266. *> Workspace.
  267. *> Modified.
  268. *>
  269. *> AP DOUBLE PRECISION array, dimension (max(NN)**2)
  270. *> Workspace.
  271. *> Modified.
  272. *>
  273. *> BP DOUBLE PRECISION array, dimension (max(NN)**2)
  274. *> Workspace.
  275. *> Modified.
  276. *>
  277. *> WORK DOUBLE PRECISION array, dimension (NWORK)
  278. *> Workspace.
  279. *> Modified.
  280. *>
  281. *> NWORK INTEGER
  282. *> The number of entries in WORK. This must be at least
  283. *> 1+5*N+2*N*lg(N)+3*N**2 where N = max( NN(j) ) and
  284. *> lg( N ) = smallest integer k such that 2**k >= N.
  285. *> Not modified.
  286. *>
  287. *> IWORK INTEGER array, dimension (LIWORK)
  288. *> Workspace.
  289. *> Modified.
  290. *>
  291. *> LIWORK INTEGER
  292. *> The number of entries in WORK. This must be at least 6*N.
  293. *> Not modified.
  294. *>
  295. *> RESULT DOUBLE PRECISION array, dimension (70)
  296. *> The values computed by the 70 tests described above.
  297. *> Modified.
  298. *>
  299. *> INFO INTEGER
  300. *> If 0, then everything ran OK.
  301. *> -1: NSIZES < 0
  302. *> -2: Some NN(j) < 0
  303. *> -3: NTYPES < 0
  304. *> -5: THRESH < 0
  305. *> -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ).
  306. *> -16: LDZ < 1 or LDZ < NMAX.
  307. *> -21: NWORK too small.
  308. *> -23: LIWORK too small.
  309. *> If DLATMR, SLATMS, DSYGV, DSPGV, DSBGV, SSYGVD, SSPGVD,
  310. *> DSBGVD, DSYGVX, DSPGVX or SSBGVX returns an error code,
  311. *> the absolute value of it is returned.
  312. *> Modified.
  313. *>
  314. *> ----------------------------------------------------------------------
  315. *>
  316. *> Some Local Variables and Parameters:
  317. *> ---- ----- --------- --- ----------
  318. *> ZERO, ONE Real 0 and 1.
  319. *> MAXTYP The number of types defined.
  320. *> NTEST The number of tests that have been run
  321. *> on this matrix.
  322. *> NTESTT The total number of tests for this call.
  323. *> NMAX Largest value in NN.
  324. *> NMATS The number of matrices generated so far.
  325. *> NERRS The number of tests which have exceeded THRESH
  326. *> so far (computed by DLAFTS).
  327. *> COND, IMODE Values to be passed to the matrix generators.
  328. *> ANORM Norm of A; passed to matrix generators.
  329. *>
  330. *> OVFL, UNFL Overflow and underflow thresholds.
  331. *> ULP, ULPINV Finest relative precision and its inverse.
  332. *> RTOVFL, RTUNFL Square roots of the previous 2 values.
  333. *> The following four arrays decode JTYPE:
  334. *> KTYPE(j) The general type (1-10) for type "j".
  335. *> KMODE(j) The MODE value to be passed to the matrix
  336. *> generator for type "j".
  337. *> KMAGN(j) The order of magnitude ( O(1),
  338. *> O(overflow^(1/2) ), O(underflow^(1/2) )
  339. *> \endverbatim
  340. *
  341. * Authors:
  342. * ========
  343. *
  344. *> \author Univ. of Tennessee
  345. *> \author Univ. of California Berkeley
  346. *> \author Univ. of Colorado Denver
  347. *> \author NAG Ltd.
  348. *
  349. *> \ingroup double_eig
  350. *
  351. * =====================================================================
  352. SUBROUTINE DDRVSG( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
  353. $ NOUNIT, A, LDA, B, LDB, D, Z, LDZ, AB, BB, AP,
  354. $ BP, WORK, NWORK, IWORK, LIWORK, RESULT, INFO )
  355. *
  356. * -- LAPACK test routine --
  357. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  358. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  359. *
  360. * .. Scalar Arguments ..
  361. INTEGER INFO, LDA, LDB, LDZ, LIWORK, NOUNIT, NSIZES,
  362. $ NTYPES, NWORK
  363. DOUBLE PRECISION THRESH
  364. * ..
  365. * .. Array Arguments ..
  366. LOGICAL DOTYPE( * )
  367. INTEGER ISEED( 4 ), IWORK( * ), NN( * )
  368. DOUBLE PRECISION A( LDA, * ), AB( LDA, * ), AP( * ),
  369. $ B( LDB, * ), BB( LDB, * ), BP( * ), D( * ),
  370. $ RESULT( * ), WORK( * ), Z( LDZ, * )
  371. * ..
  372. *
  373. * =====================================================================
  374. *
  375. * .. Parameters ..
  376. DOUBLE PRECISION ZERO, ONE, TEN
  377. PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TEN = 10.0D0 )
  378. INTEGER MAXTYP
  379. PARAMETER ( MAXTYP = 21 )
  380. * ..
  381. * .. Local Scalars ..
  382. LOGICAL BADNN
  383. CHARACTER UPLO
  384. INTEGER I, IBTYPE, IBUPLO, IINFO, IJ, IL, IMODE, ITEMP,
  385. $ ITYPE, IU, J, JCOL, JSIZE, JTYPE, KA, KA9, KB,
  386. $ KB9, M, MTYPES, N, NERRS, NMATS, NMAX, NTEST,
  387. $ NTESTT
  388. DOUBLE PRECISION ABSTOL, ANINV, ANORM, COND, OVFL, RTOVFL,
  389. $ RTUNFL, ULP, ULPINV, UNFL, VL, VU
  390. * ..
  391. * .. Local Arrays ..
  392. INTEGER IDUMMA( 1 ), IOLDSD( 4 ), ISEED2( 4 ),
  393. $ KMAGN( MAXTYP ), KMODE( MAXTYP ),
  394. $ KTYPE( MAXTYP )
  395. * ..
  396. * .. External Functions ..
  397. LOGICAL LSAME
  398. DOUBLE PRECISION DLAMCH, DLARND
  399. EXTERNAL LSAME, DLAMCH, DLARND
  400. * ..
  401. * .. External Subroutines ..
  402. EXTERNAL DLABAD, DLACPY, DLAFTS, DLASET, DLASUM, DLATMR,
  403. $ DLATMS, DSBGV, DSBGVD, DSBGVX, DSGT01, DSPGV,
  404. $ DSPGVD, DSPGVX, DSYGV, DSYGVD, DSYGVX, XERBLA
  405. * ..
  406. * .. Intrinsic Functions ..
  407. INTRINSIC ABS, DBLE, MAX, MIN, SQRT
  408. * ..
  409. * .. Data statements ..
  410. DATA KTYPE / 1, 2, 5*4, 5*5, 3*8, 6*9 /
  411. DATA KMAGN / 2*1, 1, 1, 1, 2, 3, 1, 1, 1, 2, 3, 1,
  412. $ 2, 3, 6*1 /
  413. DATA KMODE / 2*0, 4, 3, 1, 4, 4, 4, 3, 1, 4, 4, 0,
  414. $ 0, 0, 6*4 /
  415. * ..
  416. * .. Executable Statements ..
  417. *
  418. * 1) Check for errors
  419. *
  420. NTESTT = 0
  421. INFO = 0
  422. *
  423. BADNN = .FALSE.
  424. NMAX = 0
  425. DO 10 J = 1, NSIZES
  426. NMAX = MAX( NMAX, NN( J ) )
  427. IF( NN( J ).LT.0 )
  428. $ BADNN = .TRUE.
  429. 10 CONTINUE
  430. *
  431. * Check for errors
  432. *
  433. IF( NSIZES.LT.0 ) THEN
  434. INFO = -1
  435. ELSE IF( BADNN ) THEN
  436. INFO = -2
  437. ELSE IF( NTYPES.LT.0 ) THEN
  438. INFO = -3
  439. ELSE IF( LDA.LE.1 .OR. LDA.LT.NMAX ) THEN
  440. INFO = -9
  441. ELSE IF( LDZ.LE.1 .OR. LDZ.LT.NMAX ) THEN
  442. INFO = -16
  443. ELSE IF( 2*MAX( NMAX, 3 )**2.GT.NWORK ) THEN
  444. INFO = -21
  445. ELSE IF( 2*MAX( NMAX, 3 )**2.GT.LIWORK ) THEN
  446. INFO = -23
  447. END IF
  448. *
  449. IF( INFO.NE.0 ) THEN
  450. CALL XERBLA( 'DDRVSG', -INFO )
  451. RETURN
  452. END IF
  453. *
  454. * Quick return if possible
  455. *
  456. IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 )
  457. $ RETURN
  458. *
  459. * More Important constants
  460. *
  461. UNFL = DLAMCH( 'Safe minimum' )
  462. OVFL = DLAMCH( 'Overflow' )
  463. CALL DLABAD( UNFL, OVFL )
  464. ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' )
  465. ULPINV = ONE / ULP
  466. RTUNFL = SQRT( UNFL )
  467. RTOVFL = SQRT( OVFL )
  468. *
  469. DO 20 I = 1, 4
  470. ISEED2( I ) = ISEED( I )
  471. 20 CONTINUE
  472. *
  473. * Loop over sizes, types
  474. *
  475. NERRS = 0
  476. NMATS = 0
  477. *
  478. DO 650 JSIZE = 1, NSIZES
  479. N = NN( JSIZE )
  480. ANINV = ONE / DBLE( MAX( 1, N ) )
  481. *
  482. IF( NSIZES.NE.1 ) THEN
  483. MTYPES = MIN( MAXTYP, NTYPES )
  484. ELSE
  485. MTYPES = MIN( MAXTYP+1, NTYPES )
  486. END IF
  487. *
  488. KA9 = 0
  489. KB9 = 0
  490. DO 640 JTYPE = 1, MTYPES
  491. IF( .NOT.DOTYPE( JTYPE ) )
  492. $ GO TO 640
  493. NMATS = NMATS + 1
  494. NTEST = 0
  495. *
  496. DO 30 J = 1, 4
  497. IOLDSD( J ) = ISEED( J )
  498. 30 CONTINUE
  499. *
  500. * 2) Compute "A"
  501. *
  502. * Control parameters:
  503. *
  504. * KMAGN KMODE KTYPE
  505. * =1 O(1) clustered 1 zero
  506. * =2 large clustered 2 identity
  507. * =3 small exponential (none)
  508. * =4 arithmetic diagonal, w/ eigenvalues
  509. * =5 random log hermitian, w/ eigenvalues
  510. * =6 random (none)
  511. * =7 random diagonal
  512. * =8 random hermitian
  513. * =9 banded, w/ eigenvalues
  514. *
  515. IF( MTYPES.GT.MAXTYP )
  516. $ GO TO 90
  517. *
  518. ITYPE = KTYPE( JTYPE )
  519. IMODE = KMODE( JTYPE )
  520. *
  521. * Compute norm
  522. *
  523. GO TO ( 40, 50, 60 )KMAGN( JTYPE )
  524. *
  525. 40 CONTINUE
  526. ANORM = ONE
  527. GO TO 70
  528. *
  529. 50 CONTINUE
  530. ANORM = ( RTOVFL*ULP )*ANINV
  531. GO TO 70
  532. *
  533. 60 CONTINUE
  534. ANORM = RTUNFL*N*ULPINV
  535. GO TO 70
  536. *
  537. 70 CONTINUE
  538. *
  539. IINFO = 0
  540. COND = ULPINV
  541. *
  542. * Special Matrices -- Identity & Jordan block
  543. *
  544. IF( ITYPE.EQ.1 ) THEN
  545. *
  546. * Zero
  547. *
  548. KA = 0
  549. KB = 0
  550. CALL DLASET( 'Full', LDA, N, ZERO, ZERO, A, LDA )
  551. *
  552. ELSE IF( ITYPE.EQ.2 ) THEN
  553. *
  554. * Identity
  555. *
  556. KA = 0
  557. KB = 0
  558. CALL DLASET( 'Full', LDA, N, ZERO, ZERO, A, LDA )
  559. DO 80 JCOL = 1, N
  560. A( JCOL, JCOL ) = ANORM
  561. 80 CONTINUE
  562. *
  563. ELSE IF( ITYPE.EQ.4 ) THEN
  564. *
  565. * Diagonal Matrix, [Eigen]values Specified
  566. *
  567. KA = 0
  568. KB = 0
  569. CALL DLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND,
  570. $ ANORM, 0, 0, 'N', A, LDA, WORK( N+1 ),
  571. $ IINFO )
  572. *
  573. ELSE IF( ITYPE.EQ.5 ) THEN
  574. *
  575. * symmetric, eigenvalues specified
  576. *
  577. KA = MAX( 0, N-1 )
  578. KB = KA
  579. CALL DLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND,
  580. $ ANORM, N, N, 'N', A, LDA, WORK( N+1 ),
  581. $ IINFO )
  582. *
  583. ELSE IF( ITYPE.EQ.7 ) THEN
  584. *
  585. * Diagonal, random eigenvalues
  586. *
  587. KA = 0
  588. KB = 0
  589. CALL DLATMR( N, N, 'S', ISEED, 'S', WORK, 6, ONE, ONE,
  590. $ 'T', 'N', WORK( N+1 ), 1, ONE,
  591. $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, 0, 0,
  592. $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
  593. *
  594. ELSE IF( ITYPE.EQ.8 ) THEN
  595. *
  596. * symmetric, random eigenvalues
  597. *
  598. KA = MAX( 0, N-1 )
  599. KB = KA
  600. CALL DLATMR( N, N, 'S', ISEED, 'H', WORK, 6, ONE, ONE,
  601. $ 'T', 'N', WORK( N+1 ), 1, ONE,
  602. $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N,
  603. $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
  604. *
  605. ELSE IF( ITYPE.EQ.9 ) THEN
  606. *
  607. * symmetric banded, eigenvalues specified
  608. *
  609. * The following values are used for the half-bandwidths:
  610. *
  611. * ka = 1 kb = 1
  612. * ka = 2 kb = 1
  613. * ka = 2 kb = 2
  614. * ka = 3 kb = 1
  615. * ka = 3 kb = 2
  616. * ka = 3 kb = 3
  617. *
  618. KB9 = KB9 + 1
  619. IF( KB9.GT.KA9 ) THEN
  620. KA9 = KA9 + 1
  621. KB9 = 1
  622. END IF
  623. KA = MAX( 0, MIN( N-1, KA9 ) )
  624. KB = MAX( 0, MIN( N-1, KB9 ) )
  625. CALL DLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND,
  626. $ ANORM, KA, KA, 'N', A, LDA, WORK( N+1 ),
  627. $ IINFO )
  628. *
  629. ELSE
  630. *
  631. IINFO = 1
  632. END IF
  633. *
  634. IF( IINFO.NE.0 ) THEN
  635. WRITE( NOUNIT, FMT = 9999 )'Generator', IINFO, N, JTYPE,
  636. $ IOLDSD
  637. INFO = ABS( IINFO )
  638. RETURN
  639. END IF
  640. *
  641. 90 CONTINUE
  642. *
  643. ABSTOL = UNFL + UNFL
  644. IF( N.LE.1 ) THEN
  645. IL = 1
  646. IU = N
  647. ELSE
  648. IL = 1 + INT( ( N-1 )*DLARND( 1, ISEED2 ) )
  649. IU = 1 + INT( ( N-1 )*DLARND( 1, ISEED2 ) )
  650. IF( IL.GT.IU ) THEN
  651. ITEMP = IL
  652. IL = IU
  653. IU = ITEMP
  654. END IF
  655. END IF
  656. *
  657. * 3) Call DSYGV, DSPGV, DSBGV, SSYGVD, SSPGVD, SSBGVD,
  658. * DSYGVX, DSPGVX, and DSBGVX, do tests.
  659. *
  660. * loop over the three generalized problems
  661. * IBTYPE = 1: A*x = (lambda)*B*x
  662. * IBTYPE = 2: A*B*x = (lambda)*x
  663. * IBTYPE = 3: B*A*x = (lambda)*x
  664. *
  665. DO 630 IBTYPE = 1, 3
  666. *
  667. * loop over the setting UPLO
  668. *
  669. DO 620 IBUPLO = 1, 2
  670. IF( IBUPLO.EQ.1 )
  671. $ UPLO = 'U'
  672. IF( IBUPLO.EQ.2 )
  673. $ UPLO = 'L'
  674. *
  675. * Generate random well-conditioned positive definite
  676. * matrix B, of bandwidth not greater than that of A.
  677. *
  678. CALL DLATMS( N, N, 'U', ISEED, 'P', WORK, 5, TEN, ONE,
  679. $ KB, KB, UPLO, B, LDB, WORK( N+1 ),
  680. $ IINFO )
  681. *
  682. * Test DSYGV
  683. *
  684. NTEST = NTEST + 1
  685. *
  686. CALL DLACPY( ' ', N, N, A, LDA, Z, LDZ )
  687. CALL DLACPY( UPLO, N, N, B, LDB, BB, LDB )
  688. *
  689. CALL DSYGV( IBTYPE, 'V', UPLO, N, Z, LDZ, BB, LDB, D,
  690. $ WORK, NWORK, IINFO )
  691. IF( IINFO.NE.0 ) THEN
  692. WRITE( NOUNIT, FMT = 9999 )'DSYGV(V,' // UPLO //
  693. $ ')', IINFO, N, JTYPE, IOLDSD
  694. INFO = ABS( IINFO )
  695. IF( IINFO.LT.0 ) THEN
  696. RETURN
  697. ELSE
  698. RESULT( NTEST ) = ULPINV
  699. GO TO 100
  700. END IF
  701. END IF
  702. *
  703. * Do Test
  704. *
  705. CALL DSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
  706. $ LDZ, D, WORK, RESULT( NTEST ) )
  707. *
  708. * Test DSYGVD
  709. *
  710. NTEST = NTEST + 1
  711. *
  712. CALL DLACPY( ' ', N, N, A, LDA, Z, LDZ )
  713. CALL DLACPY( UPLO, N, N, B, LDB, BB, LDB )
  714. *
  715. CALL DSYGVD( IBTYPE, 'V', UPLO, N, Z, LDZ, BB, LDB, D,
  716. $ WORK, NWORK, IWORK, LIWORK, IINFO )
  717. IF( IINFO.NE.0 ) THEN
  718. WRITE( NOUNIT, FMT = 9999 )'DSYGVD(V,' // UPLO //
  719. $ ')', IINFO, N, JTYPE, IOLDSD
  720. INFO = ABS( IINFO )
  721. IF( IINFO.LT.0 ) THEN
  722. RETURN
  723. ELSE
  724. RESULT( NTEST ) = ULPINV
  725. GO TO 100
  726. END IF
  727. END IF
  728. *
  729. * Do Test
  730. *
  731. CALL DSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
  732. $ LDZ, D, WORK, RESULT( NTEST ) )
  733. *
  734. * Test DSYGVX
  735. *
  736. NTEST = NTEST + 1
  737. *
  738. CALL DLACPY( ' ', N, N, A, LDA, AB, LDA )
  739. CALL DLACPY( UPLO, N, N, B, LDB, BB, LDB )
  740. *
  741. CALL DSYGVX( IBTYPE, 'V', 'A', UPLO, N, AB, LDA, BB,
  742. $ LDB, VL, VU, IL, IU, ABSTOL, M, D, Z,
  743. $ LDZ, WORK, NWORK, IWORK( N+1 ), IWORK,
  744. $ IINFO )
  745. IF( IINFO.NE.0 ) THEN
  746. WRITE( NOUNIT, FMT = 9999 )'DSYGVX(V,A' // UPLO //
  747. $ ')', IINFO, N, JTYPE, IOLDSD
  748. INFO = ABS( IINFO )
  749. IF( IINFO.LT.0 ) THEN
  750. RETURN
  751. ELSE
  752. RESULT( NTEST ) = ULPINV
  753. GO TO 100
  754. END IF
  755. END IF
  756. *
  757. * Do Test
  758. *
  759. CALL DSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
  760. $ LDZ, D, WORK, RESULT( NTEST ) )
  761. *
  762. NTEST = NTEST + 1
  763. *
  764. CALL DLACPY( ' ', N, N, A, LDA, AB, LDA )
  765. CALL DLACPY( UPLO, N, N, B, LDB, BB, LDB )
  766. *
  767. * since we do not know the exact eigenvalues of this
  768. * eigenpair, we just set VL and VU as constants.
  769. * It is quite possible that there are no eigenvalues
  770. * in this interval.
  771. *
  772. VL = ZERO
  773. VU = ANORM
  774. CALL DSYGVX( IBTYPE, 'V', 'V', UPLO, N, AB, LDA, BB,
  775. $ LDB, VL, VU, IL, IU, ABSTOL, M, D, Z,
  776. $ LDZ, WORK, NWORK, IWORK( N+1 ), IWORK,
  777. $ IINFO )
  778. IF( IINFO.NE.0 ) THEN
  779. WRITE( NOUNIT, FMT = 9999 )'DSYGVX(V,V,' //
  780. $ UPLO // ')', IINFO, N, JTYPE, IOLDSD
  781. INFO = ABS( IINFO )
  782. IF( IINFO.LT.0 ) THEN
  783. RETURN
  784. ELSE
  785. RESULT( NTEST ) = ULPINV
  786. GO TO 100
  787. END IF
  788. END IF
  789. *
  790. * Do Test
  791. *
  792. CALL DSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z,
  793. $ LDZ, D, WORK, RESULT( NTEST ) )
  794. *
  795. NTEST = NTEST + 1
  796. *
  797. CALL DLACPY( ' ', N, N, A, LDA, AB, LDA )
  798. CALL DLACPY( UPLO, N, N, B, LDB, BB, LDB )
  799. *
  800. CALL DSYGVX( IBTYPE, 'V', 'I', UPLO, N, AB, LDA, BB,
  801. $ LDB, VL, VU, IL, IU, ABSTOL, M, D, Z,
  802. $ LDZ, WORK, NWORK, IWORK( N+1 ), IWORK,
  803. $ IINFO )
  804. IF( IINFO.NE.0 ) THEN
  805. WRITE( NOUNIT, FMT = 9999 )'DSYGVX(V,I,' //
  806. $ UPLO // ')', IINFO, N, JTYPE, IOLDSD
  807. INFO = ABS( IINFO )
  808. IF( IINFO.LT.0 ) THEN
  809. RETURN
  810. ELSE
  811. RESULT( NTEST ) = ULPINV
  812. GO TO 100
  813. END IF
  814. END IF
  815. *
  816. * Do Test
  817. *
  818. CALL DSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z,
  819. $ LDZ, D, WORK, RESULT( NTEST ) )
  820. *
  821. 100 CONTINUE
  822. *
  823. * Test DSPGV
  824. *
  825. NTEST = NTEST + 1
  826. *
  827. * Copy the matrices into packed storage.
  828. *
  829. IF( LSAME( UPLO, 'U' ) ) THEN
  830. IJ = 1
  831. DO 120 J = 1, N
  832. DO 110 I = 1, J
  833. AP( IJ ) = A( I, J )
  834. BP( IJ ) = B( I, J )
  835. IJ = IJ + 1
  836. 110 CONTINUE
  837. 120 CONTINUE
  838. ELSE
  839. IJ = 1
  840. DO 140 J = 1, N
  841. DO 130 I = J, N
  842. AP( IJ ) = A( I, J )
  843. BP( IJ ) = B( I, J )
  844. IJ = IJ + 1
  845. 130 CONTINUE
  846. 140 CONTINUE
  847. END IF
  848. *
  849. CALL DSPGV( IBTYPE, 'V', UPLO, N, AP, BP, D, Z, LDZ,
  850. $ WORK, IINFO )
  851. IF( IINFO.NE.0 ) THEN
  852. WRITE( NOUNIT, FMT = 9999 )'DSPGV(V,' // UPLO //
  853. $ ')', IINFO, N, JTYPE, IOLDSD
  854. INFO = ABS( IINFO )
  855. IF( IINFO.LT.0 ) THEN
  856. RETURN
  857. ELSE
  858. RESULT( NTEST ) = ULPINV
  859. GO TO 310
  860. END IF
  861. END IF
  862. *
  863. * Do Test
  864. *
  865. CALL DSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
  866. $ LDZ, D, WORK, RESULT( NTEST ) )
  867. *
  868. * Test DSPGVD
  869. *
  870. NTEST = NTEST + 1
  871. *
  872. * Copy the matrices into packed storage.
  873. *
  874. IF( LSAME( UPLO, 'U' ) ) THEN
  875. IJ = 1
  876. DO 160 J = 1, N
  877. DO 150 I = 1, J
  878. AP( IJ ) = A( I, J )
  879. BP( IJ ) = B( I, J )
  880. IJ = IJ + 1
  881. 150 CONTINUE
  882. 160 CONTINUE
  883. ELSE
  884. IJ = 1
  885. DO 180 J = 1, N
  886. DO 170 I = J, N
  887. AP( IJ ) = A( I, J )
  888. BP( IJ ) = B( I, J )
  889. IJ = IJ + 1
  890. 170 CONTINUE
  891. 180 CONTINUE
  892. END IF
  893. *
  894. CALL DSPGVD( IBTYPE, 'V', UPLO, N, AP, BP, D, Z, LDZ,
  895. $ WORK, NWORK, IWORK, LIWORK, IINFO )
  896. IF( IINFO.NE.0 ) THEN
  897. WRITE( NOUNIT, FMT = 9999 )'DSPGVD(V,' // UPLO //
  898. $ ')', IINFO, N, JTYPE, IOLDSD
  899. INFO = ABS( IINFO )
  900. IF( IINFO.LT.0 ) THEN
  901. RETURN
  902. ELSE
  903. RESULT( NTEST ) = ULPINV
  904. GO TO 310
  905. END IF
  906. END IF
  907. *
  908. * Do Test
  909. *
  910. CALL DSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
  911. $ LDZ, D, WORK, RESULT( NTEST ) )
  912. *
  913. * Test DSPGVX
  914. *
  915. NTEST = NTEST + 1
  916. *
  917. * Copy the matrices into packed storage.
  918. *
  919. IF( LSAME( UPLO, 'U' ) ) THEN
  920. IJ = 1
  921. DO 200 J = 1, N
  922. DO 190 I = 1, J
  923. AP( IJ ) = A( I, J )
  924. BP( IJ ) = B( I, J )
  925. IJ = IJ + 1
  926. 190 CONTINUE
  927. 200 CONTINUE
  928. ELSE
  929. IJ = 1
  930. DO 220 J = 1, N
  931. DO 210 I = J, N
  932. AP( IJ ) = A( I, J )
  933. BP( IJ ) = B( I, J )
  934. IJ = IJ + 1
  935. 210 CONTINUE
  936. 220 CONTINUE
  937. END IF
  938. *
  939. CALL DSPGVX( IBTYPE, 'V', 'A', UPLO, N, AP, BP, VL,
  940. $ VU, IL, IU, ABSTOL, M, D, Z, LDZ, WORK,
  941. $ IWORK( N+1 ), IWORK, INFO )
  942. IF( IINFO.NE.0 ) THEN
  943. WRITE( NOUNIT, FMT = 9999 )'DSPGVX(V,A' // UPLO //
  944. $ ')', IINFO, N, JTYPE, IOLDSD
  945. INFO = ABS( IINFO )
  946. IF( IINFO.LT.0 ) THEN
  947. RETURN
  948. ELSE
  949. RESULT( NTEST ) = ULPINV
  950. GO TO 310
  951. END IF
  952. END IF
  953. *
  954. * Do Test
  955. *
  956. CALL DSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z,
  957. $ LDZ, D, WORK, RESULT( NTEST ) )
  958. *
  959. NTEST = NTEST + 1
  960. *
  961. * Copy the matrices into packed storage.
  962. *
  963. IF( LSAME( UPLO, 'U' ) ) THEN
  964. IJ = 1
  965. DO 240 J = 1, N
  966. DO 230 I = 1, J
  967. AP( IJ ) = A( I, J )
  968. BP( IJ ) = B( I, J )
  969. IJ = IJ + 1
  970. 230 CONTINUE
  971. 240 CONTINUE
  972. ELSE
  973. IJ = 1
  974. DO 260 J = 1, N
  975. DO 250 I = J, N
  976. AP( IJ ) = A( I, J )
  977. BP( IJ ) = B( I, J )
  978. IJ = IJ + 1
  979. 250 CONTINUE
  980. 260 CONTINUE
  981. END IF
  982. *
  983. VL = ZERO
  984. VU = ANORM
  985. CALL DSPGVX( IBTYPE, 'V', 'V', UPLO, N, AP, BP, VL,
  986. $ VU, IL, IU, ABSTOL, M, D, Z, LDZ, WORK,
  987. $ IWORK( N+1 ), IWORK, INFO )
  988. IF( IINFO.NE.0 ) THEN
  989. WRITE( NOUNIT, FMT = 9999 )'DSPGVX(V,V' // UPLO //
  990. $ ')', IINFO, N, JTYPE, IOLDSD
  991. INFO = ABS( IINFO )
  992. IF( IINFO.LT.0 ) THEN
  993. RETURN
  994. ELSE
  995. RESULT( NTEST ) = ULPINV
  996. GO TO 310
  997. END IF
  998. END IF
  999. *
  1000. * Do Test
  1001. *
  1002. CALL DSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z,
  1003. $ LDZ, D, WORK, RESULT( NTEST ) )
  1004. *
  1005. NTEST = NTEST + 1
  1006. *
  1007. * Copy the matrices into packed storage.
  1008. *
  1009. IF( LSAME( UPLO, 'U' ) ) THEN
  1010. IJ = 1
  1011. DO 280 J = 1, N
  1012. DO 270 I = 1, J
  1013. AP( IJ ) = A( I, J )
  1014. BP( IJ ) = B( I, J )
  1015. IJ = IJ + 1
  1016. 270 CONTINUE
  1017. 280 CONTINUE
  1018. ELSE
  1019. IJ = 1
  1020. DO 300 J = 1, N
  1021. DO 290 I = J, N
  1022. AP( IJ ) = A( I, J )
  1023. BP( IJ ) = B( I, J )
  1024. IJ = IJ + 1
  1025. 290 CONTINUE
  1026. 300 CONTINUE
  1027. END IF
  1028. *
  1029. CALL DSPGVX( IBTYPE, 'V', 'I', UPLO, N, AP, BP, VL,
  1030. $ VU, IL, IU, ABSTOL, M, D, Z, LDZ, WORK,
  1031. $ IWORK( N+1 ), IWORK, INFO )
  1032. IF( IINFO.NE.0 ) THEN
  1033. WRITE( NOUNIT, FMT = 9999 )'DSPGVX(V,I' // UPLO //
  1034. $ ')', IINFO, N, JTYPE, IOLDSD
  1035. INFO = ABS( IINFO )
  1036. IF( IINFO.LT.0 ) THEN
  1037. RETURN
  1038. ELSE
  1039. RESULT( NTEST ) = ULPINV
  1040. GO TO 310
  1041. END IF
  1042. END IF
  1043. *
  1044. * Do Test
  1045. *
  1046. CALL DSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z,
  1047. $ LDZ, D, WORK, RESULT( NTEST ) )
  1048. *
  1049. 310 CONTINUE
  1050. *
  1051. IF( IBTYPE.EQ.1 ) THEN
  1052. *
  1053. * TEST DSBGV
  1054. *
  1055. NTEST = NTEST + 1
  1056. *
  1057. * Copy the matrices into band storage.
  1058. *
  1059. IF( LSAME( UPLO, 'U' ) ) THEN
  1060. DO 340 J = 1, N
  1061. DO 320 I = MAX( 1, J-KA ), J
  1062. AB( KA+1+I-J, J ) = A( I, J )
  1063. 320 CONTINUE
  1064. DO 330 I = MAX( 1, J-KB ), J
  1065. BB( KB+1+I-J, J ) = B( I, J )
  1066. 330 CONTINUE
  1067. 340 CONTINUE
  1068. ELSE
  1069. DO 370 J = 1, N
  1070. DO 350 I = J, MIN( N, J+KA )
  1071. AB( 1+I-J, J ) = A( I, J )
  1072. 350 CONTINUE
  1073. DO 360 I = J, MIN( N, J+KB )
  1074. BB( 1+I-J, J ) = B( I, J )
  1075. 360 CONTINUE
  1076. 370 CONTINUE
  1077. END IF
  1078. *
  1079. CALL DSBGV( 'V', UPLO, N, KA, KB, AB, LDA, BB, LDB,
  1080. $ D, Z, LDZ, WORK, IINFO )
  1081. IF( IINFO.NE.0 ) THEN
  1082. WRITE( NOUNIT, FMT = 9999 )'DSBGV(V,' //
  1083. $ UPLO // ')', IINFO, N, JTYPE, IOLDSD
  1084. INFO = ABS( IINFO )
  1085. IF( IINFO.LT.0 ) THEN
  1086. RETURN
  1087. ELSE
  1088. RESULT( NTEST ) = ULPINV
  1089. GO TO 620
  1090. END IF
  1091. END IF
  1092. *
  1093. * Do Test
  1094. *
  1095. CALL DSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
  1096. $ LDZ, D, WORK, RESULT( NTEST ) )
  1097. *
  1098. * TEST DSBGVD
  1099. *
  1100. NTEST = NTEST + 1
  1101. *
  1102. * Copy the matrices into band storage.
  1103. *
  1104. IF( LSAME( UPLO, 'U' ) ) THEN
  1105. DO 400 J = 1, N
  1106. DO 380 I = MAX( 1, J-KA ), J
  1107. AB( KA+1+I-J, J ) = A( I, J )
  1108. 380 CONTINUE
  1109. DO 390 I = MAX( 1, J-KB ), J
  1110. BB( KB+1+I-J, J ) = B( I, J )
  1111. 390 CONTINUE
  1112. 400 CONTINUE
  1113. ELSE
  1114. DO 430 J = 1, N
  1115. DO 410 I = J, MIN( N, J+KA )
  1116. AB( 1+I-J, J ) = A( I, J )
  1117. 410 CONTINUE
  1118. DO 420 I = J, MIN( N, J+KB )
  1119. BB( 1+I-J, J ) = B( I, J )
  1120. 420 CONTINUE
  1121. 430 CONTINUE
  1122. END IF
  1123. *
  1124. CALL DSBGVD( 'V', UPLO, N, KA, KB, AB, LDA, BB,
  1125. $ LDB, D, Z, LDZ, WORK, NWORK, IWORK,
  1126. $ LIWORK, IINFO )
  1127. IF( IINFO.NE.0 ) THEN
  1128. WRITE( NOUNIT, FMT = 9999 )'DSBGVD(V,' //
  1129. $ UPLO // ')', IINFO, N, JTYPE, IOLDSD
  1130. INFO = ABS( IINFO )
  1131. IF( IINFO.LT.0 ) THEN
  1132. RETURN
  1133. ELSE
  1134. RESULT( NTEST ) = ULPINV
  1135. GO TO 620
  1136. END IF
  1137. END IF
  1138. *
  1139. * Do Test
  1140. *
  1141. CALL DSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
  1142. $ LDZ, D, WORK, RESULT( NTEST ) )
  1143. *
  1144. * Test DSBGVX
  1145. *
  1146. NTEST = NTEST + 1
  1147. *
  1148. * Copy the matrices into band storage.
  1149. *
  1150. IF( LSAME( UPLO, 'U' ) ) THEN
  1151. DO 460 J = 1, N
  1152. DO 440 I = MAX( 1, J-KA ), J
  1153. AB( KA+1+I-J, J ) = A( I, J )
  1154. 440 CONTINUE
  1155. DO 450 I = MAX( 1, J-KB ), J
  1156. BB( KB+1+I-J, J ) = B( I, J )
  1157. 450 CONTINUE
  1158. 460 CONTINUE
  1159. ELSE
  1160. DO 490 J = 1, N
  1161. DO 470 I = J, MIN( N, J+KA )
  1162. AB( 1+I-J, J ) = A( I, J )
  1163. 470 CONTINUE
  1164. DO 480 I = J, MIN( N, J+KB )
  1165. BB( 1+I-J, J ) = B( I, J )
  1166. 480 CONTINUE
  1167. 490 CONTINUE
  1168. END IF
  1169. *
  1170. CALL DSBGVX( 'V', 'A', UPLO, N, KA, KB, AB, LDA,
  1171. $ BB, LDB, BP, MAX( 1, N ), VL, VU, IL,
  1172. $ IU, ABSTOL, M, D, Z, LDZ, WORK,
  1173. $ IWORK( N+1 ), IWORK, IINFO )
  1174. IF( IINFO.NE.0 ) THEN
  1175. WRITE( NOUNIT, FMT = 9999 )'DSBGVX(V,A' //
  1176. $ UPLO // ')', IINFO, N, JTYPE, IOLDSD
  1177. INFO = ABS( IINFO )
  1178. IF( IINFO.LT.0 ) THEN
  1179. RETURN
  1180. ELSE
  1181. RESULT( NTEST ) = ULPINV
  1182. GO TO 620
  1183. END IF
  1184. END IF
  1185. *
  1186. * Do Test
  1187. *
  1188. CALL DSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z,
  1189. $ LDZ, D, WORK, RESULT( NTEST ) )
  1190. *
  1191. *
  1192. NTEST = NTEST + 1
  1193. *
  1194. * Copy the matrices into band storage.
  1195. *
  1196. IF( LSAME( UPLO, 'U' ) ) THEN
  1197. DO 520 J = 1, N
  1198. DO 500 I = MAX( 1, J-KA ), J
  1199. AB( KA+1+I-J, J ) = A( I, J )
  1200. 500 CONTINUE
  1201. DO 510 I = MAX( 1, J-KB ), J
  1202. BB( KB+1+I-J, J ) = B( I, J )
  1203. 510 CONTINUE
  1204. 520 CONTINUE
  1205. ELSE
  1206. DO 550 J = 1, N
  1207. DO 530 I = J, MIN( N, J+KA )
  1208. AB( 1+I-J, J ) = A( I, J )
  1209. 530 CONTINUE
  1210. DO 540 I = J, MIN( N, J+KB )
  1211. BB( 1+I-J, J ) = B( I, J )
  1212. 540 CONTINUE
  1213. 550 CONTINUE
  1214. END IF
  1215. *
  1216. VL = ZERO
  1217. VU = ANORM
  1218. CALL DSBGVX( 'V', 'V', UPLO, N, KA, KB, AB, LDA,
  1219. $ BB, LDB, BP, MAX( 1, N ), VL, VU, IL,
  1220. $ IU, ABSTOL, M, D, Z, LDZ, WORK,
  1221. $ IWORK( N+1 ), IWORK, IINFO )
  1222. IF( IINFO.NE.0 ) THEN
  1223. WRITE( NOUNIT, FMT = 9999 )'DSBGVX(V,V' //
  1224. $ UPLO // ')', IINFO, N, JTYPE, IOLDSD
  1225. INFO = ABS( IINFO )
  1226. IF( IINFO.LT.0 ) THEN
  1227. RETURN
  1228. ELSE
  1229. RESULT( NTEST ) = ULPINV
  1230. GO TO 620
  1231. END IF
  1232. END IF
  1233. *
  1234. * Do Test
  1235. *
  1236. CALL DSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z,
  1237. $ LDZ, D, WORK, RESULT( NTEST ) )
  1238. *
  1239. NTEST = NTEST + 1
  1240. *
  1241. * Copy the matrices into band storage.
  1242. *
  1243. IF( LSAME( UPLO, 'U' ) ) THEN
  1244. DO 580 J = 1, N
  1245. DO 560 I = MAX( 1, J-KA ), J
  1246. AB( KA+1+I-J, J ) = A( I, J )
  1247. 560 CONTINUE
  1248. DO 570 I = MAX( 1, J-KB ), J
  1249. BB( KB+1+I-J, J ) = B( I, J )
  1250. 570 CONTINUE
  1251. 580 CONTINUE
  1252. ELSE
  1253. DO 610 J = 1, N
  1254. DO 590 I = J, MIN( N, J+KA )
  1255. AB( 1+I-J, J ) = A( I, J )
  1256. 590 CONTINUE
  1257. DO 600 I = J, MIN( N, J+KB )
  1258. BB( 1+I-J, J ) = B( I, J )
  1259. 600 CONTINUE
  1260. 610 CONTINUE
  1261. END IF
  1262. *
  1263. CALL DSBGVX( 'V', 'I', UPLO, N, KA, KB, AB, LDA,
  1264. $ BB, LDB, BP, MAX( 1, N ), VL, VU, IL,
  1265. $ IU, ABSTOL, M, D, Z, LDZ, WORK,
  1266. $ IWORK( N+1 ), IWORK, IINFO )
  1267. IF( IINFO.NE.0 ) THEN
  1268. WRITE( NOUNIT, FMT = 9999 )'DSBGVX(V,I' //
  1269. $ UPLO // ')', IINFO, N, JTYPE, IOLDSD
  1270. INFO = ABS( IINFO )
  1271. IF( IINFO.LT.0 ) THEN
  1272. RETURN
  1273. ELSE
  1274. RESULT( NTEST ) = ULPINV
  1275. GO TO 620
  1276. END IF
  1277. END IF
  1278. *
  1279. * Do Test
  1280. *
  1281. CALL DSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z,
  1282. $ LDZ, D, WORK, RESULT( NTEST ) )
  1283. *
  1284. END IF
  1285. *
  1286. 620 CONTINUE
  1287. 630 CONTINUE
  1288. *
  1289. * End of Loop -- Check for RESULT(j) > THRESH
  1290. *
  1291. NTESTT = NTESTT + NTEST
  1292. CALL DLAFTS( 'DSG', N, N, JTYPE, NTEST, RESULT, IOLDSD,
  1293. $ THRESH, NOUNIT, NERRS )
  1294. 640 CONTINUE
  1295. 650 CONTINUE
  1296. *
  1297. * Summary
  1298. *
  1299. CALL DLASUM( 'DSG', NOUNIT, NERRS, NTESTT )
  1300. *
  1301. RETURN
  1302. *
  1303. * End of DDRVSG
  1304. *
  1305. 9999 FORMAT( ' DDRVSG: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
  1306. $ I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' )
  1307. END