You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

getrf_parallel.c 25 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944
  1. /*********************************************************************/
  2. /* Copyright 2009, 2010 The University of Texas at Austin. */
  3. /* All rights reserved. */
  4. /* */
  5. /* Redistribution and use in source and binary forms, with or */
  6. /* without modification, are permitted provided that the following */
  7. /* conditions are met: */
  8. /* */
  9. /* 1. Redistributions of source code must retain the above */
  10. /* copyright notice, this list of conditions and the following */
  11. /* disclaimer. */
  12. /* */
  13. /* 2. Redistributions in binary form must reproduce the above */
  14. /* copyright notice, this list of conditions and the following */
  15. /* disclaimer in the documentation and/or other materials */
  16. /* provided with the distribution. */
  17. /* */
  18. /* THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF TEXAS AT */
  19. /* AUSTIN ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, */
  20. /* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */
  21. /* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
  22. /* DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OF TEXAS AT */
  23. /* AUSTIN OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, */
  24. /* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES */
  25. /* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE */
  26. /* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR */
  27. /* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF */
  28. /* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT */
  29. /* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT */
  30. /* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */
  31. /* POSSIBILITY OF SUCH DAMAGE. */
  32. /* */
  33. /* The views and conclusions contained in the software and */
  34. /* documentation are those of the authors and should not be */
  35. /* interpreted as representing official policies, either expressed */
  36. /* or implied, of The University of Texas at Austin. */
  37. /*********************************************************************/
  38. #include <stdio.h>
  39. #include "common.h"
  40. static FLOAT dm1 = -1.;
  41. double sqrt(double);
  42. //In this case, the recursive getrf_parallel may overflow the stack.
  43. //Instead, use malloc to alloc job_t.
  44. #if MAX_CPU_NUMBER > GETRF_MEM_ALLOC_THRESHOLD
  45. #define USE_ALLOC_HEAP
  46. #endif
  47. #ifndef CACHE_LINE_SIZE
  48. #define CACHE_LINE_SIZE 8
  49. #endif
  50. #ifndef DIVIDE_RATE
  51. #define DIVIDE_RATE 2
  52. #endif
  53. #define GEMM_PQ MAX(GEMM_P, GEMM_Q)
  54. #define REAL_GEMM_R (GEMM_R - GEMM_PQ)
  55. #ifndef GETRF_FACTOR
  56. #define GETRF_FACTOR 0.75
  57. #endif
  58. #undef GETRF_FACTOR
  59. #define GETRF_FACTOR 1.00
  60. #ifdef HAVE_C11
  61. #define atomic_load_long(p) __atomic_load_n(p, __ATOMIC_RELAXED)
  62. #define atomic_store_long(p, v) __atomic_store_n(p, v, __ATOMIC_RELAXED)
  63. #else
  64. #define atomic_load_long(p) (BLASLONG)(*(volatile BLASLONG*)(p))
  65. #define atomic_store_long(p, v) (*(volatile BLASLONG *)(p)) = (v)
  66. #endif
  67. static __inline BLASLONG FORMULA1(BLASLONG M, BLASLONG N, BLASLONG IS, BLASLONG BK, BLASLONG T) {
  68. double m = (double)(M - IS - BK);
  69. double n = (double)(N - IS - BK);
  70. double b = (double)BK;
  71. double a = (double)T;
  72. return (BLASLONG)((n + GETRF_FACTOR * m * b * (1. - a) / (b + m)) / a);
  73. }
  74. #define FORMULA2(M, N, IS, BK, T) (BLASLONG)((double)(N - IS + BK) * (1. - sqrt(1. - 1. / (double)(T))))
  75. static void inner_basic_thread(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG mypos){
  76. BLASLONG is, min_i;
  77. BLASLONG js, min_j;
  78. BLASLONG jjs, min_jj;
  79. BLASLONG m = args -> m;
  80. BLASLONG n = args -> n;
  81. BLASLONG k = args -> k;
  82. BLASLONG lda = args -> lda;
  83. BLASLONG off = args -> ldb;
  84. FLOAT *b = (FLOAT *)args -> b + (k ) * COMPSIZE;
  85. FLOAT *c = (FLOAT *)args -> b + ( k * lda) * COMPSIZE;
  86. FLOAT *d = (FLOAT *)args -> b + (k + k * lda) * COMPSIZE;
  87. FLOAT *sbb = sb;
  88. volatile BLASLONG *flag = (volatile BLASLONG *)args -> d;
  89. blasint *ipiv = (blasint *)args -> c;
  90. if (range_n) {
  91. n = range_n[1] - range_n[0];
  92. c += range_n[0] * lda * COMPSIZE;
  93. d += range_n[0] * lda * COMPSIZE;
  94. }
  95. if (args -> a == NULL) {
  96. TRSM_ILTCOPY(k, k, (FLOAT *)args -> b, lda, 0, sb);
  97. sbb = (FLOAT *)((((BLASULONG)(sb + k * k * COMPSIZE) + GEMM_ALIGN) & ~GEMM_ALIGN) + GEMM_OFFSET_B);
  98. } else {
  99. sb = (FLOAT *)args -> a;
  100. }
  101. for (js = 0; js < n; js += REAL_GEMM_R) {
  102. min_j = n - js;
  103. if (min_j > REAL_GEMM_R) min_j = REAL_GEMM_R;
  104. for (jjs = js; jjs < js + min_j; jjs += GEMM_UNROLL_N){
  105. min_jj = js + min_j - jjs;
  106. if (min_jj > GEMM_UNROLL_N) min_jj = GEMM_UNROLL_N;
  107. if (0 && GEMM_UNROLL_N <= 8) {
  108. LASWP_NCOPY(min_jj, off + 1, off + k,
  109. c + (- off + jjs * lda) * COMPSIZE, lda,
  110. ipiv, sbb + k * (jjs - js) * COMPSIZE);
  111. } else {
  112. LASWP_PLUS(min_jj, off + 1, off + k, ZERO,
  113. #ifdef COMPLEX
  114. ZERO,
  115. #endif
  116. c + (- off + jjs * lda) * COMPSIZE, lda, NULL, 0, ipiv, 1);
  117. GEMM_ONCOPY (k, min_jj, c + jjs * lda * COMPSIZE, lda, sbb + (jjs - js) * k * COMPSIZE);
  118. }
  119. for (is = 0; is < k; is += GEMM_P) {
  120. min_i = k - is;
  121. if (min_i > GEMM_P) min_i = GEMM_P;
  122. TRSM_KERNEL_LT(min_i, min_jj, k, dm1,
  123. #ifdef COMPLEX
  124. ZERO,
  125. #endif
  126. sb + k * is * COMPSIZE,
  127. sbb + (jjs - js) * k * COMPSIZE,
  128. c + (is + jjs * lda) * COMPSIZE, lda, is);
  129. }
  130. }
  131. if ((js + REAL_GEMM_R >= n) && (mypos >= 0)) {
  132. MB;
  133. atomic_store_long(&flag[mypos * CACHE_LINE_SIZE], 0);
  134. }
  135. for (is = 0; is < m; is += GEMM_P){
  136. min_i = m - is;
  137. if (min_i > GEMM_P) min_i = GEMM_P;
  138. GEMM_ITCOPY (k, min_i, b + is * COMPSIZE, lda, sa);
  139. GEMM_KERNEL_N(min_i, min_j, k, dm1,
  140. #ifdef COMPLEX
  141. ZERO,
  142. #endif
  143. sa, sbb, d + (is + js * lda) * COMPSIZE, lda);
  144. }
  145. }
  146. }
  147. /* Non blocking implementation */
  148. typedef struct {
  149. volatile BLASLONG working[MAX_CPU_NUMBER][CACHE_LINE_SIZE * DIVIDE_RATE];
  150. } job_t;
  151. #define ICOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_ITCOPY(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, BUFFER);
  152. #define OCOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_ONCOPY(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, BUFFER);
  153. #ifndef COMPLEX
  154. #define KERNEL_OPERATION(M, N, K, SA, SB, C, LDC, X, Y) \
  155. GEMM_KERNEL_N(M, N, K, dm1, SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC)
  156. #else
  157. #define KERNEL_OPERATION(M, N, K, SA, SB, C, LDC, X, Y) \
  158. GEMM_KERNEL_N(M, N, K, dm1, ZERO, SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC)
  159. #endif
  160. static int inner_advanced_thread(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG mypos){
  161. job_t *job = (job_t *)args -> common;
  162. BLASLONG xxx, bufferside;
  163. FLOAT *buffer[DIVIDE_RATE];
  164. BLASLONG jjs, min_jj, div_n;
  165. BLASLONG i, current;
  166. BLASLONG is, min_i;
  167. BLASLONG m, n_from, n_to;
  168. BLASLONG k = args -> k;
  169. BLASLONG lda = args -> lda;
  170. BLASLONG off = args -> ldb;
  171. FLOAT *a = (FLOAT *)args -> b + (k ) * COMPSIZE;
  172. FLOAT *b = (FLOAT *)args -> b + ( k * lda) * COMPSIZE;
  173. FLOAT *c = (FLOAT *)args -> b + (k + k * lda) * COMPSIZE;
  174. FLOAT *sbb= sb;
  175. blasint *ipiv = (blasint *)args -> c;
  176. BLASLONG jw;
  177. volatile BLASLONG *flag = (volatile BLASLONG *)args -> d;
  178. if (args -> a == NULL) {
  179. TRSM_ILTCOPY(k, k, (FLOAT *)args -> b, lda, 0, sb);
  180. sbb = (FLOAT *)((((BLASULONG)(sb + k * k * COMPSIZE) + GEMM_ALIGN) & ~GEMM_ALIGN) + GEMM_OFFSET_B);
  181. } else {
  182. sb = (FLOAT *)args -> a;
  183. }
  184. m = range_m[1] - range_m[0];
  185. n_from = range_n[mypos + 0];
  186. n_to = range_n[mypos + 1];
  187. a += range_m[0] * COMPSIZE;
  188. c += range_m[0] * COMPSIZE;
  189. div_n = (n_to - n_from + DIVIDE_RATE - 1) / DIVIDE_RATE;
  190. buffer[0] = sbb;
  191. for (i = 1; i < DIVIDE_RATE; i++) {
  192. buffer[i] = buffer[i - 1] + GEMM_Q * (((div_n + GEMM_UNROLL_N - 1)/GEMM_UNROLL_N) * GEMM_UNROLL_N) * COMPSIZE;
  193. }
  194. for (xxx = n_from, bufferside = 0; xxx < n_to; xxx += div_n, bufferside ++) {
  195. for (i = 0; i < args -> nthreads; i++)
  196. #if 1
  197. {
  198. do {
  199. jw = atomic_load_long(&job[mypos].working[i][CACHE_LINE_SIZE * bufferside]);
  200. } while (jw);
  201. MB;
  202. }
  203. #else
  204. while (job[mypos].working[i][CACHE_LINE_SIZE * bufferside]) {};
  205. #endif
  206. for(jjs = xxx; jjs < MIN(n_to, xxx + div_n); jjs += min_jj){
  207. min_jj = MIN(n_to, xxx + div_n) - jjs;
  208. if (min_jj > GEMM_UNROLL_N) min_jj = GEMM_UNROLL_N;
  209. if (0 && GEMM_UNROLL_N <= 8) {
  210. printf("helllo\n");
  211. LASWP_NCOPY(min_jj, off + 1, off + k,
  212. b + (- off + jjs * lda) * COMPSIZE, lda,
  213. ipiv, buffer[bufferside] + (jjs - xxx) * k * COMPSIZE);
  214. } else {
  215. LASWP_PLUS(min_jj, off + 1, off + k, ZERO,
  216. #ifdef COMPLEX
  217. ZERO,
  218. #endif
  219. b + (- off + jjs * lda) * COMPSIZE, lda, NULL, 0, ipiv, 1);
  220. GEMM_ONCOPY (k, min_jj, b + jjs * lda * COMPSIZE, lda,
  221. buffer[bufferside] + (jjs - xxx) * k * COMPSIZE);
  222. }
  223. for (is = 0; is < k; is += GEMM_P) {
  224. min_i = k - is;
  225. if (min_i > GEMM_P) min_i = GEMM_P;
  226. TRSM_KERNEL_LT(min_i, min_jj, k, dm1,
  227. #ifdef COMPLEX
  228. ZERO,
  229. #endif
  230. sb + k * is * COMPSIZE,
  231. buffer[bufferside] + (jjs - xxx) * k * COMPSIZE,
  232. b + (is + jjs * lda) * COMPSIZE, lda, is);
  233. }
  234. }
  235. MB;
  236. for (i = 0; i < args -> nthreads; i++) {
  237. atomic_store_long(&job[mypos].working[i][CACHE_LINE_SIZE * bufferside], (BLASLONG)buffer[bufferside]);
  238. }
  239. }
  240. MB;
  241. atomic_store_long(&flag[mypos * CACHE_LINE_SIZE], 0);
  242. if (m == 0) {
  243. MB;
  244. for (xxx = 0; xxx < DIVIDE_RATE; xxx++) {
  245. atomic_store_long(&job[mypos].working[mypos][CACHE_LINE_SIZE * xxx], 0);
  246. }
  247. }
  248. for(is = 0; is < m; is += min_i){
  249. min_i = m - is;
  250. if (min_i >= GEMM_P * 2) {
  251. min_i = GEMM_P;
  252. } else if (min_i > GEMM_P) {
  253. min_i = (((min_i + 1) / 2 + GEMM_UNROLL_M - 1)/GEMM_UNROLL_M) * GEMM_UNROLL_M;
  254. }
  255. ICOPY_OPERATION(k, min_i, a, lda, 0, is, sa);
  256. current = mypos;
  257. do {
  258. div_n = (range_n[current + 1] - range_n[current] + DIVIDE_RATE - 1) / DIVIDE_RATE;
  259. for (xxx = range_n[current], bufferside = 0; xxx < range_n[current + 1]; xxx += div_n, bufferside ++) {
  260. if ((current != mypos) && (!is)) {
  261. #if 1
  262. do {
  263. jw = atomic_load_long(&job[current].working[mypos][CACHE_LINE_SIZE * bufferside]);
  264. } while (jw == 0);
  265. MB;
  266. #else
  267. while(job[current].working[mypos][CACHE_LINE_SIZE * bufferside] == 0) {};
  268. #endif
  269. }
  270. KERNEL_OPERATION(min_i, MIN(range_n[current + 1] - xxx, div_n), k,
  271. sa, (FLOAT *)job[current].working[mypos][CACHE_LINE_SIZE * bufferside],
  272. c, lda, is, xxx);
  273. MB;
  274. if (is + min_i >= m) {
  275. atomic_store_long(&job[current].working[mypos][CACHE_LINE_SIZE * bufferside], 0);
  276. }
  277. }
  278. current ++;
  279. if (current >= args -> nthreads) current = 0;
  280. } while (current != mypos);
  281. }
  282. for (i = 0; i < args -> nthreads; i++) {
  283. for (xxx = 0; xxx < DIVIDE_RATE; xxx++) {
  284. #if 1
  285. do {
  286. jw = atomic_load_long(&job[mypos].working[i][CACHE_LINE_SIZE *xxx]);
  287. } while(jw != 0);
  288. MB;
  289. #else
  290. while (job[mypos].working[i][CACHE_LINE_SIZE * xxx] ) {};
  291. #endif
  292. }
  293. }
  294. return 0;
  295. }
  296. #if 1
  297. blasint CNAME(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG myid) {
  298. BLASLONG m, n, mn, lda, offset;
  299. BLASLONG init_bk, next_bk, range_n_mine[2], range_n_new[2];
  300. blasint *ipiv, iinfo, info;
  301. int mode;
  302. blas_arg_t newarg;
  303. FLOAT *a, *sbb;
  304. FLOAT dummyalpha[2] = {ZERO, ZERO};
  305. blas_queue_t queue[MAX_CPU_NUMBER];
  306. BLASLONG range_M[MAX_CPU_NUMBER + 1];
  307. BLASLONG range_N[MAX_CPU_NUMBER + 1];
  308. #ifndef USE_ALLOC_HEAP
  309. job_t job[MAX_CPU_NUMBER];
  310. #else
  311. job_t * job=NULL;
  312. #endif
  313. BLASLONG width, nn, mm;
  314. BLASLONG i, j, k, is, bk;
  315. BLASLONG num_cpu;
  316. BLASLONG f;
  317. #ifdef _MSC_VER
  318. BLASLONG flag[MAX_CPU_NUMBER * CACHE_LINE_SIZE];
  319. #else
  320. volatile BLASLONG flag[MAX_CPU_NUMBER * CACHE_LINE_SIZE] __attribute__((aligned(128)));
  321. #endif
  322. #ifndef COMPLEX
  323. #ifdef XDOUBLE
  324. mode = BLAS_XDOUBLE | BLAS_REAL;
  325. #elif defined(DOUBLE)
  326. mode = BLAS_DOUBLE | BLAS_REAL;
  327. #else
  328. mode = BLAS_SINGLE | BLAS_REAL;
  329. #endif
  330. #else
  331. #ifdef XDOUBLE
  332. mode = BLAS_XDOUBLE | BLAS_COMPLEX;
  333. #elif defined(DOUBLE)
  334. mode = BLAS_DOUBLE | BLAS_COMPLEX;
  335. #else
  336. mode = BLAS_SINGLE | BLAS_COMPLEX;
  337. #endif
  338. #endif
  339. m = args -> m;
  340. n = args -> n;
  341. a = (FLOAT *)args -> a;
  342. lda = args -> lda;
  343. ipiv = (blasint *)args -> c;
  344. offset = 0;
  345. if (range_n) {
  346. m -= range_n[0];
  347. n = range_n[1] - range_n[0];
  348. offset = range_n[0];
  349. a += range_n[0] * (lda + 1) * COMPSIZE;
  350. }
  351. if (m <= 0 || n <= 0) return 0;
  352. newarg.c = ipiv;
  353. newarg.lda = lda;
  354. info = 0;
  355. mn = MIN(m, n);
  356. init_bk = ((mn / 2 + GEMM_UNROLL_N - 1)/GEMM_UNROLL_N) * GEMM_UNROLL_N;
  357. if (init_bk > GEMM_Q) init_bk = GEMM_Q;
  358. if (init_bk <= GEMM_UNROLL_N) {
  359. info = GETF2(args, NULL, range_n, sa, sb, 0);
  360. return info;
  361. }
  362. next_bk = init_bk;
  363. bk = mn;
  364. if (bk > next_bk) bk = next_bk;
  365. range_n_new[0] = offset;
  366. range_n_new[1] = offset + bk;
  367. iinfo = CNAME(args, NULL, range_n_new, sa, sb, 0);
  368. if (iinfo && !info) info = iinfo;
  369. #ifdef USE_ALLOC_HEAP
  370. job = (job_t*)malloc(MAX_CPU_NUMBER * sizeof(job_t));
  371. if(job==NULL){
  372. fprintf(stderr, "OpenBLAS: malloc failed in %s\n", __func__);
  373. exit(1);
  374. }
  375. #endif
  376. newarg.common = (void *)job;
  377. TRSM_ILTCOPY(bk, bk, a, lda, 0, sb);
  378. sbb = (FLOAT *)((((BLASULONG)(sb + bk * bk * COMPSIZE) + GEMM_ALIGN) & ~GEMM_ALIGN) + GEMM_OFFSET_B);
  379. is = 0;
  380. num_cpu = 0;
  381. while (is < mn) {
  382. width = ((FORMULA1(m, n, is, bk, args -> nthreads) + GEMM_UNROLL_N - 1)/GEMM_UNROLL_N) * GEMM_UNROLL_N;
  383. if (width > mn - is - bk) width = mn - is - bk;
  384. if (width < bk) {
  385. next_bk = ((FORMULA2(m, n, is, bk, args -> nthreads) + GEMM_UNROLL_N)/GEMM_UNROLL_N) * GEMM_UNROLL_N;
  386. if (next_bk > bk) next_bk = bk;
  387. width = next_bk;
  388. if (width > mn - is - bk) width = mn - is - bk;
  389. }
  390. if (num_cpu > 0) {
  391. WMB;
  392. exec_blas_async_wait(num_cpu, &queue[0]);
  393. }
  394. mm = m - bk - is;
  395. nn = n - bk - is;
  396. newarg.a = sb;
  397. newarg.b = a + (is + is * lda) * COMPSIZE;
  398. newarg.d = (void *)flag;
  399. newarg.m = mm;
  400. newarg.n = nn;
  401. newarg.k = bk;
  402. newarg.ldb = is + offset;
  403. nn -= width;
  404. range_n_mine[0] = 0;
  405. range_n_mine[1] = width;
  406. range_N[0] = width;
  407. range_M[0] = 0;
  408. num_cpu = 0;
  409. while (nn > 0){
  410. if (mm >= nn) {
  411. width = blas_quickdivide(nn + args -> nthreads - num_cpu, args -> nthreads - num_cpu - 1);
  412. if (width == 0) width = nn;
  413. if (nn < width) width = nn;
  414. nn -= width;
  415. range_N[num_cpu + 1] = range_N[num_cpu] + width;
  416. width = blas_quickdivide(mm + args -> nthreads - num_cpu, args -> nthreads - num_cpu - 1);
  417. if (width == 0) width = mm;
  418. if (mm < width) width = mm;
  419. if (nn <= 0) width = mm;
  420. mm -= width;
  421. range_M[num_cpu + 1] = range_M[num_cpu] + width;
  422. } else {
  423. width = blas_quickdivide(mm + args -> nthreads - num_cpu, args -> nthreads - num_cpu - 1);
  424. if (width == 0) width = mm;
  425. if (mm < width) width = mm;
  426. mm -= width;
  427. range_M[num_cpu + 1] = range_M[num_cpu] + width;
  428. width = blas_quickdivide(nn + args -> nthreads - num_cpu, args -> nthreads - num_cpu - 1);
  429. if (width == 0) width = nn;
  430. if (nn < width) width = nn;
  431. if (mm <= 0) width = nn;
  432. nn -= width;
  433. range_N[num_cpu + 1] = range_N[num_cpu] + width;
  434. }
  435. queue[num_cpu].mode = mode;
  436. queue[num_cpu].routine = inner_advanced_thread;
  437. queue[num_cpu].args = &newarg;
  438. queue[num_cpu].range_m = &range_M[num_cpu];
  439. queue[num_cpu].range_n = &range_N[0];
  440. queue[num_cpu].sa = NULL;
  441. queue[num_cpu].sb = NULL;
  442. queue[num_cpu].next = &queue[num_cpu + 1];
  443. atomic_store_long(&flag[num_cpu * CACHE_LINE_SIZE], 1);
  444. num_cpu ++;
  445. }
  446. newarg.nthreads = num_cpu;
  447. if (num_cpu > 0) {
  448. for (j = 0; j < num_cpu; j++) {
  449. for (i = 0; i < num_cpu; i++) {
  450. for (k = 0; k < DIVIDE_RATE; k++) {
  451. job[j].working[i][CACHE_LINE_SIZE * k] = 0;
  452. }
  453. }
  454. }
  455. }
  456. is += bk;
  457. bk = mn - is;
  458. if (bk > next_bk) bk = next_bk;
  459. range_n_new[0] = offset + is;
  460. range_n_new[1] = offset + is + bk;
  461. if (num_cpu > 0) {
  462. queue[num_cpu - 1].next = NULL;
  463. WMB;
  464. exec_blas_async(0, &queue[0]);
  465. inner_basic_thread(&newarg, NULL, range_n_mine, sa, sbb, -1);
  466. iinfo = GETRF_SINGLE(args, NULL, range_n_new, sa, sbb, 0);
  467. if (iinfo && !info) info = iinfo + is;
  468. for (i = 0; i < num_cpu; i ++) {
  469. #if 1
  470. do {
  471. f = atomic_load_long(&flag[i*CACHE_LINE_SIZE]);
  472. } while (f != 0);
  473. MB;
  474. #else
  475. while (flag[i*CACHE_LINE_SIZE]) {};
  476. #endif
  477. }
  478. TRSM_ILTCOPY(bk, bk, a + (is + is * lda) * COMPSIZE, lda, 0, sb);
  479. } else {
  480. inner_basic_thread(&newarg, NULL, range_n_mine, sa, sbb, -1);
  481. iinfo = GETRF_SINGLE(args, NULL, range_n_new, sa, sbb, 0);
  482. if (iinfo && !info) info = iinfo + is;
  483. }
  484. }
  485. next_bk = init_bk;
  486. is = 0;
  487. while (is < mn) {
  488. bk = mn - is;
  489. if (bk > next_bk) bk = next_bk;
  490. width = ((FORMULA1(m, n, is, bk, args -> nthreads) + GEMM_UNROLL_N - 1)/GEMM_UNROLL_N) * GEMM_UNROLL_N;
  491. if (width > mn - is - bk) width = mn - is - bk;
  492. if (width < bk) {
  493. next_bk = ((FORMULA2(m, n, is, bk, args -> nthreads) + GEMM_UNROLL_N)/GEMM_UNROLL_N) * GEMM_UNROLL_N;
  494. if (next_bk > bk) next_bk = bk;
  495. }
  496. blas_level1_thread(mode, bk, is + bk + offset + 1, mn + offset, (void *)dummyalpha,
  497. a + (- offset + is * lda) * COMPSIZE, lda, NULL, 0,
  498. ipiv, 1, (int (*)(void))LASWP_PLUS, args -> nthreads);
  499. is += bk;
  500. }
  501. #ifdef USE_ALLOC_HEAP
  502. free(job);
  503. #endif
  504. return info;
  505. }
  506. #else
  507. blasint CNAME(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG myid) {
  508. BLASLONG m, n, mn, lda, offset;
  509. BLASLONG i, is, bk, init_bk, next_bk, range_n_new[2];
  510. blasint *ipiv, iinfo, info;
  511. int mode;
  512. blas_arg_t newarg;
  513. FLOAT *a, *sbb;
  514. FLOAT dummyalpha[2] = {ZERO, ZERO};
  515. blas_queue_t queue[MAX_CPU_NUMBER];
  516. BLASLONG range[MAX_CPU_NUMBER + 1];
  517. BLASLONG width, nn, num_cpu;
  518. volatile BLASLONG flag[MAX_CPU_NUMBER * CACHE_LINE_SIZE] __attribute__((aligned(128)));
  519. #ifndef COMPLEX
  520. #ifdef XDOUBLE
  521. mode = BLAS_XDOUBLE | BLAS_REAL;
  522. #elif defined(DOUBLE)
  523. mode = BLAS_DOUBLE | BLAS_REAL;
  524. #else
  525. mode = BLAS_SINGLE | BLAS_REAL;
  526. #endif
  527. #else
  528. #ifdef XDOUBLE
  529. mode = BLAS_XDOUBLE | BLAS_COMPLEX;
  530. #elif defined(DOUBLE)
  531. mode = BLAS_DOUBLE | BLAS_COMPLEX;
  532. #else
  533. mode = BLAS_SINGLE | BLAS_COMPLEX;
  534. #endif
  535. #endif
  536. m = args -> m;
  537. n = args -> n;
  538. a = (FLOAT *)args -> a;
  539. lda = args -> lda;
  540. ipiv = (blasint *)args -> c;
  541. offset = 0;
  542. if (range_n) {
  543. m -= range_n[0];
  544. n = range_n[1] - range_n[0];
  545. offset = range_n[0];
  546. a += range_n[0] * (lda + 1) * COMPSIZE;
  547. }
  548. if (m <= 0 || n <= 0) return 0;
  549. newarg.c = ipiv;
  550. newarg.lda = lda;
  551. newarg.common = NULL;
  552. newarg.nthreads = args -> nthreads;
  553. mn = MIN(m, n);
  554. init_bk = ((mn / 2 + GEMM_UNROLL_N - 1)/GEMM_UNROLL_N) * GEMM_UNROLL_N;
  555. if (init_bk > GEMM_Q) init_bk = GEMM_Q;
  556. if (init_bk <= GEMM_UNROLL_N) {
  557. info = GETF2(args, NULL, range_n, sa, sb, 0);
  558. return info;
  559. }
  560. width = FORMULA1(m, n, 0, init_bk, args -> nthreads);
  561. width = ((width + GEMM_UNROLL_N - 1)/GEMM_UNROLL_N) * GEMM_UNROLL_N;
  562. if (width > n - init_bk) width = n - init_bk;
  563. if (width < init_bk) {
  564. BLASLONG temp;
  565. temp = FORMULA2(m, n, 0, init_bk, args -> nthreads);
  566. temp = ((temp + GEMM_UNROLL_N - 1)/GEMM_UNROLL_N) * GEMM_UNROLL_N;
  567. if (temp < GEMM_UNROLL_N) temp = GEMM_UNROLL_N;
  568. if (temp < init_bk) init_bk = temp;
  569. }
  570. next_bk = init_bk;
  571. bk = init_bk;
  572. range_n_new[0] = offset;
  573. range_n_new[1] = offset + bk;
  574. info = CNAME(args, NULL, range_n_new, sa, sb, 0);
  575. TRSM_ILTCOPY(bk, bk, a, lda, 0, sb);
  576. is = 0;
  577. num_cpu = 0;
  578. sbb = (FLOAT *)((((BLASULONG)(sb + GEMM_PQ * GEMM_PQ * COMPSIZE) + GEMM_ALIGN) & ~GEMM_ALIGN) + GEMM_OFFSET_B);
  579. while (is < mn) {
  580. width = FORMULA1(m, n, is, bk, args -> nthreads);
  581. width = ((width + GEMM_UNROLL_N - 1)/GEMM_UNROLL_N) * GEMM_UNROLL_N;
  582. if (width < bk) {
  583. next_bk = FORMULA2(m, n, is, bk, args -> nthreads);
  584. next_bk = ((next_bk + GEMM_UNROLL_N - 1)/GEMM_UNROLL_N) * GEMM_UNROLL_N;
  585. if (next_bk > bk) next_bk = bk;
  586. #if 0
  587. if (next_bk < GEMM_UNROLL_N) next_bk = MIN(GEMM_UNROLL_N, mn - bk - is);
  588. #else
  589. if (next_bk < GEMM_UNROLL_N) next_bk = MAX(GEMM_UNROLL_N, mn - bk - is);
  590. #endif
  591. width = next_bk;
  592. }
  593. if (width > mn - is - bk) {
  594. next_bk = mn - is - bk;
  595. width = next_bk;
  596. }
  597. nn = n - bk - is;
  598. if (width > nn) width = nn;
  599. WMB;
  600. if (num_cpu > 1) exec_blas_async_wait(num_cpu - 1, &queue[1]);
  601. range[0] = 0;
  602. range[1] = width;
  603. num_cpu = 1;
  604. nn -= width;
  605. newarg.a = sb;
  606. newarg.b = a + (is + is * lda) * COMPSIZE;
  607. newarg.d = (void *)flag;
  608. newarg.m = m - bk - is;
  609. newarg.n = n - bk - is;
  610. newarg.k = bk;
  611. newarg.ldb = is + offset;
  612. while (nn > 0){
  613. width = blas_quickdivide(nn + args -> nthreads - num_cpu, args -> nthreads - num_cpu);
  614. nn -= width;
  615. if (nn < 0) width = width + nn;
  616. range[num_cpu + 1] = range[num_cpu] + width;
  617. queue[num_cpu].mode = mode;
  618. //queue[num_cpu].routine = inner_advanced_thread;
  619. queue[num_cpu].routine = (void *)inner_basic_thread;
  620. queue[num_cpu].args = &newarg;
  621. queue[num_cpu].range_m = NULL;
  622. queue[num_cpu].range_n = &range[num_cpu];
  623. queue[num_cpu].sa = NULL;
  624. queue[num_cpu].sb = NULL;
  625. queue[num_cpu].next = &queue[num_cpu + 1];
  626. atomic_store_long(&flag[num_cpu * CACHE_LINE_SIZE], 1);
  627. num_cpu ++;
  628. }
  629. queue[num_cpu - 1].next = NULL;
  630. is += bk;
  631. bk = n - is;
  632. if (bk > next_bk) bk = next_bk;
  633. range_n_new[0] = offset + is;
  634. range_n_new[1] = offset + is + bk;
  635. WMB;
  636. if (num_cpu > 1) {
  637. exec_blas_async(1, &queue[1]);
  638. #if 0
  639. inner_basic_thread(&newarg, NULL, &range[0], sa, sbb, 0);
  640. iinfo = GETRF_SINGLE(args, NULL, range_n_new, sa, sbb, 0);
  641. #else
  642. if (range[1] >= bk * 4) {
  643. BLASLONG myrange[2];
  644. myrange[0] = 0;
  645. myrange[1] = bk;
  646. inner_basic_thread(&newarg, NULL, &myrange[0], sa, sbb, -1);
  647. iinfo = GETRF_SINGLE(args, NULL, range_n_new, sa, sbb, 0);
  648. myrange[0] = bk;
  649. myrange[1] = range[1];
  650. inner_basic_thread(&newarg, NULL, &myrange[0], sa, sbb, -1);
  651. } else {
  652. inner_basic_thread(&newarg, NULL, &range[0], sa, sbb, -1);
  653. iinfo = GETRF_SINGLE(args, NULL, range_n_new, sa, sbb, 0);
  654. }
  655. #endif
  656. for (i = 1; i < num_cpu; i ++) while (atomic_load_long(&flag[i * CACHE_LINE_SIZE])) {};
  657. TRSM_ILTCOPY(bk, bk, a + (is + is * lda) * COMPSIZE, lda, 0, sb);
  658. } else {
  659. inner_basic_thread(&newarg, NULL, &range[0], sa, sbb, -1);
  660. iinfo = GETRF_SINGLE(args, NULL, range_n_new, sa, sbb, 0);
  661. }
  662. if (iinfo && !info) info = iinfo + is;
  663. }
  664. next_bk = init_bk;
  665. bk = init_bk;
  666. is = 0;
  667. while (is < mn) {
  668. bk = mn - is;
  669. if (bk > next_bk) bk = next_bk;
  670. width = FORMULA1(m, n, is, bk, args -> nthreads);
  671. width = ((width + GEMM_UNROLL_N - 1)/GEMM_UNROLL_N) * GEMM_UNROLL_N;
  672. if (width < bk) {
  673. next_bk = FORMULA2(m, n, is, bk, args -> nthreads);
  674. next_bk = ((next_bk + GEMM_UNROLL_N - 1)/GEMM_UNROLL_N) * GEMM_UNROLL_N;
  675. if (next_bk > bk) next_bk = bk;
  676. #if 0
  677. if (next_bk < GEMM_UNROLL_N) next_bk = MIN(GEMM_UNROLL_N, mn - bk - is);
  678. #else
  679. if (next_bk < GEMM_UNROLL_N) next_bk = MAX(GEMM_UNROLL_N, mn - bk - is);
  680. #endif
  681. }
  682. if (width > mn - is - bk) {
  683. next_bk = mn - is - bk;
  684. width = next_bk;
  685. }
  686. blas_level1_thread(mode, bk, is + bk + offset + 1, mn + offset, (void *)dummyalpha,
  687. a + (- offset + is * lda) * COMPSIZE, lda, NULL, 0,
  688. ipiv, 1, (void *)LASWP_PLUS, args -> nthreads);
  689. is += bk;
  690. }
  691. return info;
  692. }
  693. #endif