You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

spstf2.f 11 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386
  1. *> \brief \b SPSTF2 computes the Cholesky factorization with complete pivoting of a real symmetric positive semidefinite matrix.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SPSTF2 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/spstf2.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/spstf2.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/spstf2.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE SPSTF2( UPLO, N, A, LDA, PIV, RANK, TOL, WORK, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * REAL TOL
  25. * INTEGER INFO, LDA, N, RANK
  26. * CHARACTER UPLO
  27. * ..
  28. * .. Array Arguments ..
  29. * REAL A( LDA, * ), WORK( 2*N )
  30. * INTEGER PIV( N )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> SPSTF2 computes the Cholesky factorization with complete
  40. *> pivoting of a real symmetric positive semidefinite matrix A.
  41. *>
  42. *> The factorization has the form
  43. *> P**T * A * P = U**T * U , if UPLO = 'U',
  44. *> P**T * A * P = L * L**T, if UPLO = 'L',
  45. *> where U is an upper triangular matrix and L is lower triangular, and
  46. *> P is stored as vector PIV.
  47. *>
  48. *> This algorithm does not attempt to check that A is positive
  49. *> semidefinite. This version of the algorithm calls level 2 BLAS.
  50. *> \endverbatim
  51. *
  52. * Arguments:
  53. * ==========
  54. *
  55. *> \param[in] UPLO
  56. *> \verbatim
  57. *> UPLO is CHARACTER*1
  58. *> Specifies whether the upper or lower triangular part of the
  59. *> symmetric matrix A is stored.
  60. *> = 'U': Upper triangular
  61. *> = 'L': Lower triangular
  62. *> \endverbatim
  63. *>
  64. *> \param[in] N
  65. *> \verbatim
  66. *> N is INTEGER
  67. *> The order of the matrix A. N >= 0.
  68. *> \endverbatim
  69. *>
  70. *> \param[in,out] A
  71. *> \verbatim
  72. *> A is REAL array, dimension (LDA,N)
  73. *> On entry, the symmetric matrix A. If UPLO = 'U', the leading
  74. *> n by n upper triangular part of A contains the upper
  75. *> triangular part of the matrix A, and the strictly lower
  76. *> triangular part of A is not referenced. If UPLO = 'L', the
  77. *> leading n by n lower triangular part of A contains the lower
  78. *> triangular part of the matrix A, and the strictly upper
  79. *> triangular part of A is not referenced.
  80. *>
  81. *> On exit, if INFO = 0, the factor U or L from the Cholesky
  82. *> factorization as above.
  83. *> \endverbatim
  84. *>
  85. *> \param[out] PIV
  86. *> \verbatim
  87. *> PIV is INTEGER array, dimension (N)
  88. *> PIV is such that the nonzero entries are P( PIV(K), K ) = 1.
  89. *> \endverbatim
  90. *>
  91. *> \param[out] RANK
  92. *> \verbatim
  93. *> RANK is INTEGER
  94. *> The rank of A given by the number of steps the algorithm
  95. *> completed.
  96. *> \endverbatim
  97. *>
  98. *> \param[in] TOL
  99. *> \verbatim
  100. *> TOL is REAL
  101. *> User defined tolerance. If TOL < 0, then N*U*MAX( A( K,K ) )
  102. *> will be used. The algorithm terminates at the (K-1)st step
  103. *> if the pivot <= TOL.
  104. *> \endverbatim
  105. *>
  106. *> \param[in] LDA
  107. *> \verbatim
  108. *> LDA is INTEGER
  109. *> The leading dimension of the array A. LDA >= max(1,N).
  110. *> \endverbatim
  111. *>
  112. *> \param[out] WORK
  113. *> \verbatim
  114. *> WORK is REAL array, dimension (2*N)
  115. *> Work space.
  116. *> \endverbatim
  117. *>
  118. *> \param[out] INFO
  119. *> \verbatim
  120. *> INFO is INTEGER
  121. *> < 0: If INFO = -K, the K-th argument had an illegal value,
  122. *> = 0: algorithm completed successfully, and
  123. *> > 0: the matrix A is either rank deficient with computed rank
  124. *> as returned in RANK, or is not positive semidefinite. See
  125. *> Section 7 of LAPACK Working Note #161 for further
  126. *> information.
  127. *> \endverbatim
  128. *
  129. * Authors:
  130. * ========
  131. *
  132. *> \author Univ. of Tennessee
  133. *> \author Univ. of California Berkeley
  134. *> \author Univ. of Colorado Denver
  135. *> \author NAG Ltd.
  136. *
  137. *> \date December 2016
  138. *
  139. *> \ingroup realOTHERcomputational
  140. *
  141. * =====================================================================
  142. SUBROUTINE SPSTF2( UPLO, N, A, LDA, PIV, RANK, TOL, WORK, INFO )
  143. *
  144. * -- LAPACK computational routine (version 3.7.0) --
  145. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  146. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  147. * December 2016
  148. *
  149. * .. Scalar Arguments ..
  150. REAL TOL
  151. INTEGER INFO, LDA, N, RANK
  152. CHARACTER UPLO
  153. * ..
  154. * .. Array Arguments ..
  155. REAL A( LDA, * ), WORK( 2*N )
  156. INTEGER PIV( N )
  157. * ..
  158. *
  159. * =====================================================================
  160. *
  161. * .. Parameters ..
  162. REAL ONE, ZERO
  163. PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
  164. * ..
  165. * .. Local Scalars ..
  166. REAL AJJ, SSTOP, STEMP
  167. INTEGER I, ITEMP, J, PVT
  168. LOGICAL UPPER
  169. * ..
  170. * .. External Functions ..
  171. REAL SLAMCH
  172. LOGICAL LSAME, SISNAN
  173. EXTERNAL SLAMCH, LSAME, SISNAN
  174. * ..
  175. * .. External Subroutines ..
  176. EXTERNAL SGEMV, SSCAL, SSWAP, XERBLA
  177. * ..
  178. * .. Intrinsic Functions ..
  179. INTRINSIC MAX, SQRT, MAXLOC
  180. * ..
  181. * .. Executable Statements ..
  182. *
  183. * Test the input parameters
  184. *
  185. INFO = 0
  186. UPPER = LSAME( UPLO, 'U' )
  187. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  188. INFO = -1
  189. ELSE IF( N.LT.0 ) THEN
  190. INFO = -2
  191. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  192. INFO = -4
  193. END IF
  194. IF( INFO.NE.0 ) THEN
  195. CALL XERBLA( 'SPSTF2', -INFO )
  196. RETURN
  197. END IF
  198. *
  199. * Quick return if possible
  200. *
  201. IF( N.EQ.0 )
  202. $ RETURN
  203. *
  204. * Initialize PIV
  205. *
  206. DO 100 I = 1, N
  207. PIV( I ) = I
  208. 100 CONTINUE
  209. *
  210. * Compute stopping value
  211. *
  212. PVT = 1
  213. AJJ = A( PVT, PVT )
  214. DO I = 2, N
  215. IF( A( I, I ).GT.AJJ ) THEN
  216. PVT = I
  217. AJJ = A( PVT, PVT )
  218. END IF
  219. END DO
  220. IF( AJJ.LE.ZERO.OR.SISNAN( AJJ ) ) THEN
  221. RANK = 0
  222. INFO = 1
  223. GO TO 170
  224. END IF
  225. *
  226. * Compute stopping value if not supplied
  227. *
  228. IF( TOL.LT.ZERO ) THEN
  229. SSTOP = N * SLAMCH( 'Epsilon' ) * AJJ
  230. ELSE
  231. SSTOP = TOL
  232. END IF
  233. *
  234. * Set first half of WORK to zero, holds dot products
  235. *
  236. DO 110 I = 1, N
  237. WORK( I ) = 0
  238. 110 CONTINUE
  239. *
  240. IF( UPPER ) THEN
  241. *
  242. * Compute the Cholesky factorization P**T * A * P = U**T * U
  243. *
  244. DO 130 J = 1, N
  245. *
  246. * Find pivot, test for exit, else swap rows and columns
  247. * Update dot products, compute possible pivots which are
  248. * stored in the second half of WORK
  249. *
  250. DO 120 I = J, N
  251. *
  252. IF( J.GT.1 ) THEN
  253. WORK( I ) = WORK( I ) + A( J-1, I )**2
  254. END IF
  255. WORK( N+I ) = A( I, I ) - WORK( I )
  256. *
  257. 120 CONTINUE
  258. *
  259. IF( J.GT.1 ) THEN
  260. ITEMP = MAXLOC( WORK( (N+J):(2*N) ), 1 )
  261. PVT = ITEMP + J - 1
  262. AJJ = WORK( N+PVT )
  263. IF( AJJ.LE.SSTOP.OR.SISNAN( AJJ ) ) THEN
  264. A( J, J ) = AJJ
  265. GO TO 160
  266. END IF
  267. END IF
  268. *
  269. IF( J.NE.PVT ) THEN
  270. *
  271. * Pivot OK, so can now swap pivot rows and columns
  272. *
  273. A( PVT, PVT ) = A( J, J )
  274. CALL SSWAP( J-1, A( 1, J ), 1, A( 1, PVT ), 1 )
  275. IF( PVT.LT.N )
  276. $ CALL SSWAP( N-PVT, A( J, PVT+1 ), LDA,
  277. $ A( PVT, PVT+1 ), LDA )
  278. CALL SSWAP( PVT-J-1, A( J, J+1 ), LDA, A( J+1, PVT ), 1 )
  279. *
  280. * Swap dot products and PIV
  281. *
  282. STEMP = WORK( J )
  283. WORK( J ) = WORK( PVT )
  284. WORK( PVT ) = STEMP
  285. ITEMP = PIV( PVT )
  286. PIV( PVT ) = PIV( J )
  287. PIV( J ) = ITEMP
  288. END IF
  289. *
  290. AJJ = SQRT( AJJ )
  291. A( J, J ) = AJJ
  292. *
  293. * Compute elements J+1:N of row J
  294. *
  295. IF( J.LT.N ) THEN
  296. CALL SGEMV( 'Trans', J-1, N-J, -ONE, A( 1, J+1 ), LDA,
  297. $ A( 1, J ), 1, ONE, A( J, J+1 ), LDA )
  298. CALL SSCAL( N-J, ONE / AJJ, A( J, J+1 ), LDA )
  299. END IF
  300. *
  301. 130 CONTINUE
  302. *
  303. ELSE
  304. *
  305. * Compute the Cholesky factorization P**T * A * P = L * L**T
  306. *
  307. DO 150 J = 1, N
  308. *
  309. * Find pivot, test for exit, else swap rows and columns
  310. * Update dot products, compute possible pivots which are
  311. * stored in the second half of WORK
  312. *
  313. DO 140 I = J, N
  314. *
  315. IF( J.GT.1 ) THEN
  316. WORK( I ) = WORK( I ) + A( I, J-1 )**2
  317. END IF
  318. WORK( N+I ) = A( I, I ) - WORK( I )
  319. *
  320. 140 CONTINUE
  321. *
  322. IF( J.GT.1 ) THEN
  323. ITEMP = MAXLOC( WORK( (N+J):(2*N) ), 1 )
  324. PVT = ITEMP + J - 1
  325. AJJ = WORK( N+PVT )
  326. IF( AJJ.LE.SSTOP.OR.SISNAN( AJJ ) ) THEN
  327. A( J, J ) = AJJ
  328. GO TO 160
  329. END IF
  330. END IF
  331. *
  332. IF( J.NE.PVT ) THEN
  333. *
  334. * Pivot OK, so can now swap pivot rows and columns
  335. *
  336. A( PVT, PVT ) = A( J, J )
  337. CALL SSWAP( J-1, A( J, 1 ), LDA, A( PVT, 1 ), LDA )
  338. IF( PVT.LT.N )
  339. $ CALL SSWAP( N-PVT, A( PVT+1, J ), 1, A( PVT+1, PVT ),
  340. $ 1 )
  341. CALL SSWAP( PVT-J-1, A( J+1, J ), 1, A( PVT, J+1 ), LDA )
  342. *
  343. * Swap dot products and PIV
  344. *
  345. STEMP = WORK( J )
  346. WORK( J ) = WORK( PVT )
  347. WORK( PVT ) = STEMP
  348. ITEMP = PIV( PVT )
  349. PIV( PVT ) = PIV( J )
  350. PIV( J ) = ITEMP
  351. END IF
  352. *
  353. AJJ = SQRT( AJJ )
  354. A( J, J ) = AJJ
  355. *
  356. * Compute elements J+1:N of column J
  357. *
  358. IF( J.LT.N ) THEN
  359. CALL SGEMV( 'No Trans', N-J, J-1, -ONE, A( J+1, 1 ), LDA,
  360. $ A( J, 1 ), LDA, ONE, A( J+1, J ), 1 )
  361. CALL SSCAL( N-J, ONE / AJJ, A( J+1, J ), 1 )
  362. END IF
  363. *
  364. 150 CONTINUE
  365. *
  366. END IF
  367. *
  368. * Ran to completion, A has full rank
  369. *
  370. RANK = N
  371. *
  372. GO TO 170
  373. 160 CONTINUE
  374. *
  375. * Rank is number of steps completed. Set INFO = 1 to signal
  376. * that the factorization cannot be used to solve a system.
  377. *
  378. RANK = J - 1
  379. INFO = 1
  380. *
  381. 170 CONTINUE
  382. RETURN
  383. *
  384. * End of SPSTF2
  385. *
  386. END