You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zgemv.f 9.4 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350
  1. *> \brief \b ZGEMV
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE ZGEMV(TRANS,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
  12. *
  13. * .. Scalar Arguments ..
  14. * COMPLEX*16 ALPHA,BETA
  15. * INTEGER INCX,INCY,LDA,M,N
  16. * CHARACTER TRANS
  17. * ..
  18. * .. Array Arguments ..
  19. * COMPLEX*16 A(LDA,*),X(*),Y(*)
  20. * ..
  21. *
  22. *
  23. *> \par Purpose:
  24. * =============
  25. *>
  26. *> \verbatim
  27. *>
  28. *> ZGEMV performs one of the matrix-vector operations
  29. *>
  30. *> y := alpha*A*x + beta*y, or y := alpha*A**T*x + beta*y, or
  31. *>
  32. *> y := alpha*A**H*x + beta*y,
  33. *>
  34. *> where alpha and beta are scalars, x and y are vectors and A is an
  35. *> m by n matrix.
  36. *> \endverbatim
  37. *
  38. * Arguments:
  39. * ==========
  40. *
  41. *> \param[in] TRANS
  42. *> \verbatim
  43. *> TRANS is CHARACTER*1
  44. *> On entry, TRANS specifies the operation to be performed as
  45. *> follows:
  46. *>
  47. *> TRANS = 'N' or 'n' y := alpha*A*x + beta*y.
  48. *>
  49. *> TRANS = 'T' or 't' y := alpha*A**T*x + beta*y.
  50. *>
  51. *> TRANS = 'C' or 'c' y := alpha*A**H*x + beta*y.
  52. *> \endverbatim
  53. *>
  54. *> \param[in] M
  55. *> \verbatim
  56. *> M is INTEGER
  57. *> On entry, M specifies the number of rows of the matrix A.
  58. *> M must be at least zero.
  59. *> \endverbatim
  60. *>
  61. *> \param[in] N
  62. *> \verbatim
  63. *> N is INTEGER
  64. *> On entry, N specifies the number of columns of the matrix A.
  65. *> N must be at least zero.
  66. *> \endverbatim
  67. *>
  68. *> \param[in] ALPHA
  69. *> \verbatim
  70. *> ALPHA is COMPLEX*16
  71. *> On entry, ALPHA specifies the scalar alpha.
  72. *> \endverbatim
  73. *>
  74. *> \param[in] A
  75. *> \verbatim
  76. *> A is COMPLEX*16 array, dimension ( LDA, N )
  77. *> Before entry, the leading m by n part of the array A must
  78. *> contain the matrix of coefficients.
  79. *> \endverbatim
  80. *>
  81. *> \param[in] LDA
  82. *> \verbatim
  83. *> LDA is INTEGER
  84. *> On entry, LDA specifies the first dimension of A as declared
  85. *> in the calling (sub) program. LDA must be at least
  86. *> max( 1, m ).
  87. *> \endverbatim
  88. *>
  89. *> \param[in] X
  90. *> \verbatim
  91. *> X is COMPLEX*16 array, dimension at least
  92. *> ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
  93. *> and at least
  94. *> ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
  95. *> Before entry, the incremented array X must contain the
  96. *> vector x.
  97. *> \endverbatim
  98. *>
  99. *> \param[in] INCX
  100. *> \verbatim
  101. *> INCX is INTEGER
  102. *> On entry, INCX specifies the increment for the elements of
  103. *> X. INCX must not be zero.
  104. *> \endverbatim
  105. *>
  106. *> \param[in] BETA
  107. *> \verbatim
  108. *> BETA is COMPLEX*16
  109. *> On entry, BETA specifies the scalar beta. When BETA is
  110. *> supplied as zero then Y need not be set on input.
  111. *> \endverbatim
  112. *>
  113. *> \param[in,out] Y
  114. *> \verbatim
  115. *> Y is COMPLEX*16 array, dimension at least
  116. *> ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
  117. *> and at least
  118. *> ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
  119. *> Before entry with BETA non-zero, the incremented array Y
  120. *> must contain the vector y. On exit, Y is overwritten by the
  121. *> updated vector y.
  122. *> \endverbatim
  123. *>
  124. *> \param[in] INCY
  125. *> \verbatim
  126. *> INCY is INTEGER
  127. *> On entry, INCY specifies the increment for the elements of
  128. *> Y. INCY must not be zero.
  129. *> \endverbatim
  130. *
  131. * Authors:
  132. * ========
  133. *
  134. *> \author Univ. of Tennessee
  135. *> \author Univ. of California Berkeley
  136. *> \author Univ. of Colorado Denver
  137. *> \author NAG Ltd.
  138. *
  139. *> \date December 2016
  140. *
  141. *> \ingroup complex16_blas_level2
  142. *
  143. *> \par Further Details:
  144. * =====================
  145. *>
  146. *> \verbatim
  147. *>
  148. *> Level 2 Blas routine.
  149. *> The vector and matrix arguments are not referenced when N = 0, or M = 0
  150. *>
  151. *> -- Written on 22-October-1986.
  152. *> Jack Dongarra, Argonne National Lab.
  153. *> Jeremy Du Croz, Nag Central Office.
  154. *> Sven Hammarling, Nag Central Office.
  155. *> Richard Hanson, Sandia National Labs.
  156. *> \endverbatim
  157. *>
  158. * =====================================================================
  159. SUBROUTINE ZGEMV(TRANS,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
  160. *
  161. * -- Reference BLAS level2 routine (version 3.7.0) --
  162. * -- Reference BLAS is a software package provided by Univ. of Tennessee, --
  163. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  164. * December 2016
  165. *
  166. * .. Scalar Arguments ..
  167. COMPLEX*16 ALPHA,BETA
  168. INTEGER INCX,INCY,LDA,M,N
  169. CHARACTER TRANS
  170. * ..
  171. * .. Array Arguments ..
  172. COMPLEX*16 A(LDA,*),X(*),Y(*)
  173. * ..
  174. *
  175. * =====================================================================
  176. *
  177. * .. Parameters ..
  178. COMPLEX*16 ONE
  179. PARAMETER (ONE= (1.0D+0,0.0D+0))
  180. COMPLEX*16 ZERO
  181. PARAMETER (ZERO= (0.0D+0,0.0D+0))
  182. * ..
  183. * .. Local Scalars ..
  184. COMPLEX*16 TEMP
  185. INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY,LENX,LENY
  186. LOGICAL NOCONJ
  187. * ..
  188. * .. External Functions ..
  189. LOGICAL LSAME
  190. EXTERNAL LSAME
  191. * ..
  192. * .. External Subroutines ..
  193. EXTERNAL XERBLA
  194. * ..
  195. * .. Intrinsic Functions ..
  196. INTRINSIC DCONJG,MAX
  197. * ..
  198. *
  199. * Test the input parameters.
  200. *
  201. INFO = 0
  202. IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
  203. + .NOT.LSAME(TRANS,'C')) THEN
  204. INFO = 1
  205. ELSE IF (M.LT.0) THEN
  206. INFO = 2
  207. ELSE IF (N.LT.0) THEN
  208. INFO = 3
  209. ELSE IF (LDA.LT.MAX(1,M)) THEN
  210. INFO = 6
  211. ELSE IF (INCX.EQ.0) THEN
  212. INFO = 8
  213. ELSE IF (INCY.EQ.0) THEN
  214. INFO = 11
  215. END IF
  216. IF (INFO.NE.0) THEN
  217. CALL XERBLA('ZGEMV ',INFO)
  218. RETURN
  219. END IF
  220. *
  221. * Quick return if possible.
  222. *
  223. IF ((M.EQ.0) .OR. (N.EQ.0) .OR.
  224. + ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
  225. *
  226. NOCONJ = LSAME(TRANS,'T')
  227. *
  228. * Set LENX and LENY, the lengths of the vectors x and y, and set
  229. * up the start points in X and Y.
  230. *
  231. IF (LSAME(TRANS,'N')) THEN
  232. LENX = N
  233. LENY = M
  234. ELSE
  235. LENX = M
  236. LENY = N
  237. END IF
  238. IF (INCX.GT.0) THEN
  239. KX = 1
  240. ELSE
  241. KX = 1 - (LENX-1)*INCX
  242. END IF
  243. IF (INCY.GT.0) THEN
  244. KY = 1
  245. ELSE
  246. KY = 1 - (LENY-1)*INCY
  247. END IF
  248. *
  249. * Start the operations. In this version the elements of A are
  250. * accessed sequentially with one pass through A.
  251. *
  252. * First form y := beta*y.
  253. *
  254. IF (BETA.NE.ONE) THEN
  255. IF (INCY.EQ.1) THEN
  256. IF (BETA.EQ.ZERO) THEN
  257. DO 10 I = 1,LENY
  258. Y(I) = ZERO
  259. 10 CONTINUE
  260. ELSE
  261. DO 20 I = 1,LENY
  262. Y(I) = BETA*Y(I)
  263. 20 CONTINUE
  264. END IF
  265. ELSE
  266. IY = KY
  267. IF (BETA.EQ.ZERO) THEN
  268. DO 30 I = 1,LENY
  269. Y(IY) = ZERO
  270. IY = IY + INCY
  271. 30 CONTINUE
  272. ELSE
  273. DO 40 I = 1,LENY
  274. Y(IY) = BETA*Y(IY)
  275. IY = IY + INCY
  276. 40 CONTINUE
  277. END IF
  278. END IF
  279. END IF
  280. IF (ALPHA.EQ.ZERO) RETURN
  281. IF (LSAME(TRANS,'N')) THEN
  282. *
  283. * Form y := alpha*A*x + y.
  284. *
  285. JX = KX
  286. IF (INCY.EQ.1) THEN
  287. DO 60 J = 1,N
  288. TEMP = ALPHA*X(JX)
  289. DO 50 I = 1,M
  290. Y(I) = Y(I) + TEMP*A(I,J)
  291. 50 CONTINUE
  292. JX = JX + INCX
  293. 60 CONTINUE
  294. ELSE
  295. DO 80 J = 1,N
  296. TEMP = ALPHA*X(JX)
  297. IY = KY
  298. DO 70 I = 1,M
  299. Y(IY) = Y(IY) + TEMP*A(I,J)
  300. IY = IY + INCY
  301. 70 CONTINUE
  302. JX = JX + INCX
  303. 80 CONTINUE
  304. END IF
  305. ELSE
  306. *
  307. * Form y := alpha*A**T*x + y or y := alpha*A**H*x + y.
  308. *
  309. JY = KY
  310. IF (INCX.EQ.1) THEN
  311. DO 110 J = 1,N
  312. TEMP = ZERO
  313. IF (NOCONJ) THEN
  314. DO 90 I = 1,M
  315. TEMP = TEMP + A(I,J)*X(I)
  316. 90 CONTINUE
  317. ELSE
  318. DO 100 I = 1,M
  319. TEMP = TEMP + DCONJG(A(I,J))*X(I)
  320. 100 CONTINUE
  321. END IF
  322. Y(JY) = Y(JY) + ALPHA*TEMP
  323. JY = JY + INCY
  324. 110 CONTINUE
  325. ELSE
  326. DO 140 J = 1,N
  327. TEMP = ZERO
  328. IX = KX
  329. IF (NOCONJ) THEN
  330. DO 120 I = 1,M
  331. TEMP = TEMP + A(I,J)*X(IX)
  332. IX = IX + INCX
  333. 120 CONTINUE
  334. ELSE
  335. DO 130 I = 1,M
  336. TEMP = TEMP + DCONJG(A(I,J))*X(IX)
  337. IX = IX + INCX
  338. 130 CONTINUE
  339. END IF
  340. Y(JY) = Y(JY) + ALPHA*TEMP
  341. JY = JY + INCY
  342. 140 CONTINUE
  343. END IF
  344. END IF
  345. *
  346. RETURN
  347. *
  348. * End of ZGEMV .
  349. *
  350. END