You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ctrmv.f 12 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373
  1. *> \brief \b CTRMV
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE CTRMV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX)
  12. *
  13. * .. Scalar Arguments ..
  14. * INTEGER INCX,LDA,N
  15. * CHARACTER DIAG,TRANS,UPLO
  16. * ..
  17. * .. Array Arguments ..
  18. * COMPLEX A(LDA,*),X(*)
  19. * ..
  20. *
  21. *
  22. *> \par Purpose:
  23. * =============
  24. *>
  25. *> \verbatim
  26. *>
  27. *> CTRMV performs one of the matrix-vector operations
  28. *>
  29. *> x := A*x, or x := A**T*x, or x := A**H*x,
  30. *>
  31. *> where x is an n element vector and A is an n by n unit, or non-unit,
  32. *> upper or lower triangular matrix.
  33. *> \endverbatim
  34. *
  35. * Arguments:
  36. * ==========
  37. *
  38. *> \param[in] UPLO
  39. *> \verbatim
  40. *> UPLO is CHARACTER*1
  41. *> On entry, UPLO specifies whether the matrix is an upper or
  42. *> lower triangular matrix as follows:
  43. *>
  44. *> UPLO = 'U' or 'u' A is an upper triangular matrix.
  45. *>
  46. *> UPLO = 'L' or 'l' A is a lower triangular matrix.
  47. *> \endverbatim
  48. *>
  49. *> \param[in] TRANS
  50. *> \verbatim
  51. *> TRANS is CHARACTER*1
  52. *> On entry, TRANS specifies the operation to be performed as
  53. *> follows:
  54. *>
  55. *> TRANS = 'N' or 'n' x := A*x.
  56. *>
  57. *> TRANS = 'T' or 't' x := A**T*x.
  58. *>
  59. *> TRANS = 'C' or 'c' x := A**H*x.
  60. *> \endverbatim
  61. *>
  62. *> \param[in] DIAG
  63. *> \verbatim
  64. *> DIAG is CHARACTER*1
  65. *> On entry, DIAG specifies whether or not A is unit
  66. *> triangular as follows:
  67. *>
  68. *> DIAG = 'U' or 'u' A is assumed to be unit triangular.
  69. *>
  70. *> DIAG = 'N' or 'n' A is not assumed to be unit
  71. *> triangular.
  72. *> \endverbatim
  73. *>
  74. *> \param[in] N
  75. *> \verbatim
  76. *> N is INTEGER
  77. *> On entry, N specifies the order of the matrix A.
  78. *> N must be at least zero.
  79. *> \endverbatim
  80. *>
  81. *> \param[in] A
  82. *> \verbatim
  83. *> A is COMPLEX array, dimension ( LDA, N ).
  84. *> Before entry with UPLO = 'U' or 'u', the leading n by n
  85. *> upper triangular part of the array A must contain the upper
  86. *> triangular matrix and the strictly lower triangular part of
  87. *> A is not referenced.
  88. *> Before entry with UPLO = 'L' or 'l', the leading n by n
  89. *> lower triangular part of the array A must contain the lower
  90. *> triangular matrix and the strictly upper triangular part of
  91. *> A is not referenced.
  92. *> Note that when DIAG = 'U' or 'u', the diagonal elements of
  93. *> A are not referenced either, but are assumed to be unity.
  94. *> \endverbatim
  95. *>
  96. *> \param[in] LDA
  97. *> \verbatim
  98. *> LDA is INTEGER
  99. *> On entry, LDA specifies the first dimension of A as declared
  100. *> in the calling (sub) program. LDA must be at least
  101. *> max( 1, n ).
  102. *> \endverbatim
  103. *>
  104. *> \param[in,out] X
  105. *> \verbatim
  106. *> X is COMPLEX array, dimension at least
  107. *> ( 1 + ( n - 1 )*abs( INCX ) ).
  108. *> Before entry, the incremented array X must contain the n
  109. *> element vector x. On exit, X is overwritten with the
  110. *> transformed vector x.
  111. *> \endverbatim
  112. *>
  113. *> \param[in] INCX
  114. *> \verbatim
  115. *> INCX is INTEGER
  116. *> On entry, INCX specifies the increment for the elements of
  117. *> X. INCX must not be zero.
  118. *> \endverbatim
  119. *
  120. * Authors:
  121. * ========
  122. *
  123. *> \author Univ. of Tennessee
  124. *> \author Univ. of California Berkeley
  125. *> \author Univ. of Colorado Denver
  126. *> \author NAG Ltd.
  127. *
  128. *> \date December 2016
  129. *
  130. *> \ingroup complex_blas_level2
  131. *
  132. *> \par Further Details:
  133. * =====================
  134. *>
  135. *> \verbatim
  136. *>
  137. *> Level 2 Blas routine.
  138. *> The vector and matrix arguments are not referenced when N = 0, or M = 0
  139. *>
  140. *> -- Written on 22-October-1986.
  141. *> Jack Dongarra, Argonne National Lab.
  142. *> Jeremy Du Croz, Nag Central Office.
  143. *> Sven Hammarling, Nag Central Office.
  144. *> Richard Hanson, Sandia National Labs.
  145. *> \endverbatim
  146. *>
  147. * =====================================================================
  148. SUBROUTINE CTRMV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX)
  149. *
  150. * -- Reference BLAS level2 routine (version 3.7.0) --
  151. * -- Reference BLAS is a software package provided by Univ. of Tennessee, --
  152. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  153. * December 2016
  154. *
  155. * .. Scalar Arguments ..
  156. INTEGER INCX,LDA,N
  157. CHARACTER DIAG,TRANS,UPLO
  158. * ..
  159. * .. Array Arguments ..
  160. COMPLEX A(LDA,*),X(*)
  161. * ..
  162. *
  163. * =====================================================================
  164. *
  165. * .. Parameters ..
  166. COMPLEX ZERO
  167. PARAMETER (ZERO= (0.0E+0,0.0E+0))
  168. * ..
  169. * .. Local Scalars ..
  170. COMPLEX TEMP
  171. INTEGER I,INFO,IX,J,JX,KX
  172. LOGICAL NOCONJ,NOUNIT
  173. * ..
  174. * .. External Functions ..
  175. LOGICAL LSAME
  176. EXTERNAL LSAME
  177. * ..
  178. * .. External Subroutines ..
  179. EXTERNAL XERBLA
  180. * ..
  181. * .. Intrinsic Functions ..
  182. INTRINSIC CONJG,MAX
  183. * ..
  184. *
  185. * Test the input parameters.
  186. *
  187. INFO = 0
  188. IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
  189. INFO = 1
  190. ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
  191. + .NOT.LSAME(TRANS,'C')) THEN
  192. INFO = 2
  193. ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
  194. INFO = 3
  195. ELSE IF (N.LT.0) THEN
  196. INFO = 4
  197. ELSE IF (LDA.LT.MAX(1,N)) THEN
  198. INFO = 6
  199. ELSE IF (INCX.EQ.0) THEN
  200. INFO = 8
  201. END IF
  202. IF (INFO.NE.0) THEN
  203. CALL XERBLA('CTRMV ',INFO)
  204. RETURN
  205. END IF
  206. *
  207. * Quick return if possible.
  208. *
  209. IF (N.EQ.0) RETURN
  210. *
  211. NOCONJ = LSAME(TRANS,'T')
  212. NOUNIT = LSAME(DIAG,'N')
  213. *
  214. * Set up the start point in X if the increment is not unity. This
  215. * will be ( N - 1 )*INCX too small for descending loops.
  216. *
  217. IF (INCX.LE.0) THEN
  218. KX = 1 - (N-1)*INCX
  219. ELSE IF (INCX.NE.1) THEN
  220. KX = 1
  221. END IF
  222. *
  223. * Start the operations. In this version the elements of A are
  224. * accessed sequentially with one pass through A.
  225. *
  226. IF (LSAME(TRANS,'N')) THEN
  227. *
  228. * Form x := A*x.
  229. *
  230. IF (LSAME(UPLO,'U')) THEN
  231. IF (INCX.EQ.1) THEN
  232. DO 20 J = 1,N
  233. IF (X(J).NE.ZERO) THEN
  234. TEMP = X(J)
  235. DO 10 I = 1,J - 1
  236. X(I) = X(I) + TEMP*A(I,J)
  237. 10 CONTINUE
  238. IF (NOUNIT) X(J) = X(J)*A(J,J)
  239. END IF
  240. 20 CONTINUE
  241. ELSE
  242. JX = KX
  243. DO 40 J = 1,N
  244. IF (X(JX).NE.ZERO) THEN
  245. TEMP = X(JX)
  246. IX = KX
  247. DO 30 I = 1,J - 1
  248. X(IX) = X(IX) + TEMP*A(I,J)
  249. IX = IX + INCX
  250. 30 CONTINUE
  251. IF (NOUNIT) X(JX) = X(JX)*A(J,J)
  252. END IF
  253. JX = JX + INCX
  254. 40 CONTINUE
  255. END IF
  256. ELSE
  257. IF (INCX.EQ.1) THEN
  258. DO 60 J = N,1,-1
  259. IF (X(J).NE.ZERO) THEN
  260. TEMP = X(J)
  261. DO 50 I = N,J + 1,-1
  262. X(I) = X(I) + TEMP*A(I,J)
  263. 50 CONTINUE
  264. IF (NOUNIT) X(J) = X(J)*A(J,J)
  265. END IF
  266. 60 CONTINUE
  267. ELSE
  268. KX = KX + (N-1)*INCX
  269. JX = KX
  270. DO 80 J = N,1,-1
  271. IF (X(JX).NE.ZERO) THEN
  272. TEMP = X(JX)
  273. IX = KX
  274. DO 70 I = N,J + 1,-1
  275. X(IX) = X(IX) + TEMP*A(I,J)
  276. IX = IX - INCX
  277. 70 CONTINUE
  278. IF (NOUNIT) X(JX) = X(JX)*A(J,J)
  279. END IF
  280. JX = JX - INCX
  281. 80 CONTINUE
  282. END IF
  283. END IF
  284. ELSE
  285. *
  286. * Form x := A**T*x or x := A**H*x.
  287. *
  288. IF (LSAME(UPLO,'U')) THEN
  289. IF (INCX.EQ.1) THEN
  290. DO 110 J = N,1,-1
  291. TEMP = X(J)
  292. IF (NOCONJ) THEN
  293. IF (NOUNIT) TEMP = TEMP*A(J,J)
  294. DO 90 I = J - 1,1,-1
  295. TEMP = TEMP + A(I,J)*X(I)
  296. 90 CONTINUE
  297. ELSE
  298. IF (NOUNIT) TEMP = TEMP*CONJG(A(J,J))
  299. DO 100 I = J - 1,1,-1
  300. TEMP = TEMP + CONJG(A(I,J))*X(I)
  301. 100 CONTINUE
  302. END IF
  303. X(J) = TEMP
  304. 110 CONTINUE
  305. ELSE
  306. JX = KX + (N-1)*INCX
  307. DO 140 J = N,1,-1
  308. TEMP = X(JX)
  309. IX = JX
  310. IF (NOCONJ) THEN
  311. IF (NOUNIT) TEMP = TEMP*A(J,J)
  312. DO 120 I = J - 1,1,-1
  313. IX = IX - INCX
  314. TEMP = TEMP + A(I,J)*X(IX)
  315. 120 CONTINUE
  316. ELSE
  317. IF (NOUNIT) TEMP = TEMP*CONJG(A(J,J))
  318. DO 130 I = J - 1,1,-1
  319. IX = IX - INCX
  320. TEMP = TEMP + CONJG(A(I,J))*X(IX)
  321. 130 CONTINUE
  322. END IF
  323. X(JX) = TEMP
  324. JX = JX - INCX
  325. 140 CONTINUE
  326. END IF
  327. ELSE
  328. IF (INCX.EQ.1) THEN
  329. DO 170 J = 1,N
  330. TEMP = X(J)
  331. IF (NOCONJ) THEN
  332. IF (NOUNIT) TEMP = TEMP*A(J,J)
  333. DO 150 I = J + 1,N
  334. TEMP = TEMP + A(I,J)*X(I)
  335. 150 CONTINUE
  336. ELSE
  337. IF (NOUNIT) TEMP = TEMP*CONJG(A(J,J))
  338. DO 160 I = J + 1,N
  339. TEMP = TEMP + CONJG(A(I,J))*X(I)
  340. 160 CONTINUE
  341. END IF
  342. X(J) = TEMP
  343. 170 CONTINUE
  344. ELSE
  345. JX = KX
  346. DO 200 J = 1,N
  347. TEMP = X(JX)
  348. IX = JX
  349. IF (NOCONJ) THEN
  350. IF (NOUNIT) TEMP = TEMP*A(J,J)
  351. DO 180 I = J + 1,N
  352. IX = IX + INCX
  353. TEMP = TEMP + A(I,J)*X(IX)
  354. 180 CONTINUE
  355. ELSE
  356. IF (NOUNIT) TEMP = TEMP*CONJG(A(J,J))
  357. DO 190 I = J + 1,N
  358. IX = IX + INCX
  359. TEMP = TEMP + CONJG(A(I,J))*X(IX)
  360. 190 CONTINUE
  361. END IF
  362. X(JX) = TEMP
  363. JX = JX + INCX
  364. 200 CONTINUE
  365. END IF
  366. END IF
  367. END IF
  368. *
  369. RETURN
  370. *
  371. * End of CTRMV .
  372. *
  373. END