You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zlascl.f 9.9 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364
  1. *> \brief \b ZLASCL multiplies a general rectangular matrix by a real scalar defined as cto/cfrom.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZLASCL + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlascl.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlascl.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlascl.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZLASCL( TYPE, KL, KU, CFROM, CTO, M, N, A, LDA, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER TYPE
  25. * INTEGER INFO, KL, KU, LDA, M, N
  26. * DOUBLE PRECISION CFROM, CTO
  27. * ..
  28. * .. Array Arguments ..
  29. * COMPLEX*16 A( LDA, * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> ZLASCL multiplies the M by N complex matrix A by the real scalar
  39. *> CTO/CFROM. This is done without over/underflow as long as the final
  40. *> result CTO*A(I,J)/CFROM does not over/underflow. TYPE specifies that
  41. *> A may be full, upper triangular, lower triangular, upper Hessenberg,
  42. *> or banded.
  43. *> \endverbatim
  44. *
  45. * Arguments:
  46. * ==========
  47. *
  48. *> \param[in] TYPE
  49. *> \verbatim
  50. *> TYPE is CHARACTER*1
  51. *> TYPE indices the storage type of the input matrix.
  52. *> = 'G': A is a full matrix.
  53. *> = 'L': A is a lower triangular matrix.
  54. *> = 'U': A is an upper triangular matrix.
  55. *> = 'H': A is an upper Hessenberg matrix.
  56. *> = 'B': A is a symmetric band matrix with lower bandwidth KL
  57. *> and upper bandwidth KU and with the only the lower
  58. *> half stored.
  59. *> = 'Q': A is a symmetric band matrix with lower bandwidth KL
  60. *> and upper bandwidth KU and with the only the upper
  61. *> half stored.
  62. *> = 'Z': A is a band matrix with lower bandwidth KL and upper
  63. *> bandwidth KU. See ZGBTRF for storage details.
  64. *> \endverbatim
  65. *>
  66. *> \param[in] KL
  67. *> \verbatim
  68. *> KL is INTEGER
  69. *> The lower bandwidth of A. Referenced only if TYPE = 'B',
  70. *> 'Q' or 'Z'.
  71. *> \endverbatim
  72. *>
  73. *> \param[in] KU
  74. *> \verbatim
  75. *> KU is INTEGER
  76. *> The upper bandwidth of A. Referenced only if TYPE = 'B',
  77. *> 'Q' or 'Z'.
  78. *> \endverbatim
  79. *>
  80. *> \param[in] CFROM
  81. *> \verbatim
  82. *> CFROM is DOUBLE PRECISION
  83. *> \endverbatim
  84. *>
  85. *> \param[in] CTO
  86. *> \verbatim
  87. *> CTO is DOUBLE PRECISION
  88. *>
  89. *> The matrix A is multiplied by CTO/CFROM. A(I,J) is computed
  90. *> without over/underflow if the final result CTO*A(I,J)/CFROM
  91. *> can be represented without over/underflow. CFROM must be
  92. *> nonzero.
  93. *> \endverbatim
  94. *>
  95. *> \param[in] M
  96. *> \verbatim
  97. *> M is INTEGER
  98. *> The number of rows of the matrix A. M >= 0.
  99. *> \endverbatim
  100. *>
  101. *> \param[in] N
  102. *> \verbatim
  103. *> N is INTEGER
  104. *> The number of columns of the matrix A. N >= 0.
  105. *> \endverbatim
  106. *>
  107. *> \param[in,out] A
  108. *> \verbatim
  109. *> A is COMPLEX*16 array, dimension (LDA,N)
  110. *> The matrix to be multiplied by CTO/CFROM. See TYPE for the
  111. *> storage type.
  112. *> \endverbatim
  113. *>
  114. *> \param[in] LDA
  115. *> \verbatim
  116. *> LDA is INTEGER
  117. *> The leading dimension of the array A. LDA >= max(1,M).
  118. *> \endverbatim
  119. *>
  120. *> \param[out] INFO
  121. *> \verbatim
  122. *> INFO is INTEGER
  123. *> 0 - successful exit
  124. *> <0 - if INFO = -i, the i-th argument had an illegal value.
  125. *> \endverbatim
  126. *
  127. * Authors:
  128. * ========
  129. *
  130. *> \author Univ. of Tennessee
  131. *> \author Univ. of California Berkeley
  132. *> \author Univ. of Colorado Denver
  133. *> \author NAG Ltd.
  134. *
  135. *> \date September 2012
  136. *
  137. *> \ingroup complex16OTHERauxiliary
  138. *
  139. * =====================================================================
  140. SUBROUTINE ZLASCL( TYPE, KL, KU, CFROM, CTO, M, N, A, LDA, INFO )
  141. *
  142. * -- LAPACK auxiliary routine (version 3.4.2) --
  143. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  144. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  145. * September 2012
  146. *
  147. * .. Scalar Arguments ..
  148. CHARACTER TYPE
  149. INTEGER INFO, KL, KU, LDA, M, N
  150. DOUBLE PRECISION CFROM, CTO
  151. * ..
  152. * .. Array Arguments ..
  153. COMPLEX*16 A( LDA, * )
  154. * ..
  155. *
  156. * =====================================================================
  157. *
  158. * .. Parameters ..
  159. DOUBLE PRECISION ZERO, ONE
  160. PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
  161. * ..
  162. * .. Local Scalars ..
  163. LOGICAL DONE
  164. INTEGER I, ITYPE, J, K1, K2, K3, K4
  165. DOUBLE PRECISION BIGNUM, CFROM1, CFROMC, CTO1, CTOC, MUL, SMLNUM
  166. * ..
  167. * .. External Functions ..
  168. LOGICAL LSAME, DISNAN
  169. DOUBLE PRECISION DLAMCH
  170. EXTERNAL LSAME, DLAMCH, DISNAN
  171. * ..
  172. * .. Intrinsic Functions ..
  173. INTRINSIC ABS, MAX, MIN
  174. * ..
  175. * .. External Subroutines ..
  176. EXTERNAL XERBLA
  177. * ..
  178. * .. Executable Statements ..
  179. *
  180. * Test the input arguments
  181. *
  182. INFO = 0
  183. *
  184. IF( LSAME( TYPE, 'G' ) ) THEN
  185. ITYPE = 0
  186. ELSE IF( LSAME( TYPE, 'L' ) ) THEN
  187. ITYPE = 1
  188. ELSE IF( LSAME( TYPE, 'U' ) ) THEN
  189. ITYPE = 2
  190. ELSE IF( LSAME( TYPE, 'H' ) ) THEN
  191. ITYPE = 3
  192. ELSE IF( LSAME( TYPE, 'B' ) ) THEN
  193. ITYPE = 4
  194. ELSE IF( LSAME( TYPE, 'Q' ) ) THEN
  195. ITYPE = 5
  196. ELSE IF( LSAME( TYPE, 'Z' ) ) THEN
  197. ITYPE = 6
  198. ELSE
  199. ITYPE = -1
  200. END IF
  201. *
  202. IF( ITYPE.EQ.-1 ) THEN
  203. INFO = -1
  204. ELSE IF( CFROM.EQ.ZERO .OR. DISNAN(CFROM) ) THEN
  205. INFO = -4
  206. ELSE IF( DISNAN(CTO) ) THEN
  207. INFO = -5
  208. ELSE IF( M.LT.0 ) THEN
  209. INFO = -6
  210. ELSE IF( N.LT.0 .OR. ( ITYPE.EQ.4 .AND. N.NE.M ) .OR.
  211. $ ( ITYPE.EQ.5 .AND. N.NE.M ) ) THEN
  212. INFO = -7
  213. ELSE IF( ITYPE.LE.3 .AND. LDA.LT.MAX( 1, M ) ) THEN
  214. INFO = -9
  215. ELSE IF( ITYPE.GE.4 ) THEN
  216. IF( KL.LT.0 .OR. KL.GT.MAX( M-1, 0 ) ) THEN
  217. INFO = -2
  218. ELSE IF( KU.LT.0 .OR. KU.GT.MAX( N-1, 0 ) .OR.
  219. $ ( ( ITYPE.EQ.4 .OR. ITYPE.EQ.5 ) .AND. KL.NE.KU ) )
  220. $ THEN
  221. INFO = -3
  222. ELSE IF( ( ITYPE.EQ.4 .AND. LDA.LT.KL+1 ) .OR.
  223. $ ( ITYPE.EQ.5 .AND. LDA.LT.KU+1 ) .OR.
  224. $ ( ITYPE.EQ.6 .AND. LDA.LT.2*KL+KU+1 ) ) THEN
  225. INFO = -9
  226. END IF
  227. END IF
  228. *
  229. IF( INFO.NE.0 ) THEN
  230. CALL XERBLA( 'ZLASCL', -INFO )
  231. RETURN
  232. END IF
  233. *
  234. * Quick return if possible
  235. *
  236. IF( N.EQ.0 .OR. M.EQ.0 )
  237. $ RETURN
  238. *
  239. * Get machine parameters
  240. *
  241. SMLNUM = DLAMCH( 'S' )
  242. BIGNUM = ONE / SMLNUM
  243. *
  244. CFROMC = CFROM
  245. CTOC = CTO
  246. *
  247. 10 CONTINUE
  248. CFROM1 = CFROMC*SMLNUM
  249. IF( CFROM1.EQ.CFROMC ) THEN
  250. ! CFROMC is an inf. Multiply by a correctly signed zero for
  251. ! finite CTOC, or a NaN if CTOC is infinite.
  252. MUL = CTOC / CFROMC
  253. DONE = .TRUE.
  254. CTO1 = CTOC
  255. ELSE
  256. CTO1 = CTOC / BIGNUM
  257. IF( CTO1.EQ.CTOC ) THEN
  258. ! CTOC is either 0 or an inf. In both cases, CTOC itself
  259. ! serves as the correct multiplication factor.
  260. MUL = CTOC
  261. DONE = .TRUE.
  262. CFROMC = ONE
  263. ELSE IF( ABS( CFROM1 ).GT.ABS( CTOC ) .AND. CTOC.NE.ZERO ) THEN
  264. MUL = SMLNUM
  265. DONE = .FALSE.
  266. CFROMC = CFROM1
  267. ELSE IF( ABS( CTO1 ).GT.ABS( CFROMC ) ) THEN
  268. MUL = BIGNUM
  269. DONE = .FALSE.
  270. CTOC = CTO1
  271. ELSE
  272. MUL = CTOC / CFROMC
  273. DONE = .TRUE.
  274. END IF
  275. END IF
  276. *
  277. IF( ITYPE.EQ.0 ) THEN
  278. *
  279. * Full matrix
  280. *
  281. DO 30 J = 1, N
  282. DO 20 I = 1, M
  283. A( I, J ) = A( I, J )*MUL
  284. 20 CONTINUE
  285. 30 CONTINUE
  286. *
  287. ELSE IF( ITYPE.EQ.1 ) THEN
  288. *
  289. * Lower triangular matrix
  290. *
  291. DO 50 J = 1, N
  292. DO 40 I = J, M
  293. A( I, J ) = A( I, J )*MUL
  294. 40 CONTINUE
  295. 50 CONTINUE
  296. *
  297. ELSE IF( ITYPE.EQ.2 ) THEN
  298. *
  299. * Upper triangular matrix
  300. *
  301. DO 70 J = 1, N
  302. DO 60 I = 1, MIN( J, M )
  303. A( I, J ) = A( I, J )*MUL
  304. 60 CONTINUE
  305. 70 CONTINUE
  306. *
  307. ELSE IF( ITYPE.EQ.3 ) THEN
  308. *
  309. * Upper Hessenberg matrix
  310. *
  311. DO 90 J = 1, N
  312. DO 80 I = 1, MIN( J+1, M )
  313. A( I, J ) = A( I, J )*MUL
  314. 80 CONTINUE
  315. 90 CONTINUE
  316. *
  317. ELSE IF( ITYPE.EQ.4 ) THEN
  318. *
  319. * Lower half of a symmetric band matrix
  320. *
  321. K3 = KL + 1
  322. K4 = N + 1
  323. DO 110 J = 1, N
  324. DO 100 I = 1, MIN( K3, K4-J )
  325. A( I, J ) = A( I, J )*MUL
  326. 100 CONTINUE
  327. 110 CONTINUE
  328. *
  329. ELSE IF( ITYPE.EQ.5 ) THEN
  330. *
  331. * Upper half of a symmetric band matrix
  332. *
  333. K1 = KU + 2
  334. K3 = KU + 1
  335. DO 130 J = 1, N
  336. DO 120 I = MAX( K1-J, 1 ), K3
  337. A( I, J ) = A( I, J )*MUL
  338. 120 CONTINUE
  339. 130 CONTINUE
  340. *
  341. ELSE IF( ITYPE.EQ.6 ) THEN
  342. *
  343. * Band matrix
  344. *
  345. K1 = KL + KU + 2
  346. K2 = KL + 1
  347. K3 = 2*KL + KU + 1
  348. K4 = KL + KU + 1 + M
  349. DO 150 J = 1, N
  350. DO 140 I = MAX( K1-J, K2 ), MIN( K3, K4-J )
  351. A( I, J ) = A( I, J )*MUL
  352. 140 CONTINUE
  353. 150 CONTINUE
  354. *
  355. END IF
  356. *
  357. IF( .NOT.DONE )
  358. $ GO TO 10
  359. *
  360. RETURN
  361. *
  362. * End of ZLASCL
  363. *
  364. END