You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zhpevx.f 16 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500
  1. *> \brief <b> ZHPEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZHPEVX + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhpevx.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhpevx.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhpevx.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZHPEVX( JOBZ, RANGE, UPLO, N, AP, VL, VU, IL, IU,
  22. * ABSTOL, M, W, Z, LDZ, WORK, RWORK, IWORK,
  23. * IFAIL, INFO )
  24. *
  25. * .. Scalar Arguments ..
  26. * CHARACTER JOBZ, RANGE, UPLO
  27. * INTEGER IL, INFO, IU, LDZ, M, N
  28. * DOUBLE PRECISION ABSTOL, VL, VU
  29. * ..
  30. * .. Array Arguments ..
  31. * INTEGER IFAIL( * ), IWORK( * )
  32. * DOUBLE PRECISION RWORK( * ), W( * )
  33. * COMPLEX*16 AP( * ), WORK( * ), Z( LDZ, * )
  34. * ..
  35. *
  36. *
  37. *> \par Purpose:
  38. * =============
  39. *>
  40. *> \verbatim
  41. *>
  42. *> ZHPEVX computes selected eigenvalues and, optionally, eigenvectors
  43. *> of a complex Hermitian matrix A in packed storage.
  44. *> Eigenvalues/vectors can be selected by specifying either a range of
  45. *> values or a range of indices for the desired eigenvalues.
  46. *> \endverbatim
  47. *
  48. * Arguments:
  49. * ==========
  50. *
  51. *> \param[in] JOBZ
  52. *> \verbatim
  53. *> JOBZ is CHARACTER*1
  54. *> = 'N': Compute eigenvalues only;
  55. *> = 'V': Compute eigenvalues and eigenvectors.
  56. *> \endverbatim
  57. *>
  58. *> \param[in] RANGE
  59. *> \verbatim
  60. *> RANGE is CHARACTER*1
  61. *> = 'A': all eigenvalues will be found;
  62. *> = 'V': all eigenvalues in the half-open interval (VL,VU]
  63. *> will be found;
  64. *> = 'I': the IL-th through IU-th eigenvalues will be found.
  65. *> \endverbatim
  66. *>
  67. *> \param[in] UPLO
  68. *> \verbatim
  69. *> UPLO is CHARACTER*1
  70. *> = 'U': Upper triangle of A is stored;
  71. *> = 'L': Lower triangle of A is stored.
  72. *> \endverbatim
  73. *>
  74. *> \param[in] N
  75. *> \verbatim
  76. *> N is INTEGER
  77. *> The order of the matrix A. N >= 0.
  78. *> \endverbatim
  79. *>
  80. *> \param[in,out] AP
  81. *> \verbatim
  82. *> AP is COMPLEX*16 array, dimension (N*(N+1)/2)
  83. *> On entry, the upper or lower triangle of the Hermitian matrix
  84. *> A, packed columnwise in a linear array. The j-th column of A
  85. *> is stored in the array AP as follows:
  86. *> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
  87. *> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
  88. *>
  89. *> On exit, AP is overwritten by values generated during the
  90. *> reduction to tridiagonal form. If UPLO = 'U', the diagonal
  91. *> and first superdiagonal of the tridiagonal matrix T overwrite
  92. *> the corresponding elements of A, and if UPLO = 'L', the
  93. *> diagonal and first subdiagonal of T overwrite the
  94. *> corresponding elements of A.
  95. *> \endverbatim
  96. *>
  97. *> \param[in] VL
  98. *> \verbatim
  99. *> VL is DOUBLE PRECISION
  100. *> \endverbatim
  101. *>
  102. *> \param[in] VU
  103. *> \verbatim
  104. *> VU is DOUBLE PRECISION
  105. *> If RANGE='V', the lower and upper bounds of the interval to
  106. *> be searched for eigenvalues. VL < VU.
  107. *> Not referenced if RANGE = 'A' or 'I'.
  108. *> \endverbatim
  109. *>
  110. *> \param[in] IL
  111. *> \verbatim
  112. *> IL is INTEGER
  113. *> \endverbatim
  114. *>
  115. *> \param[in] IU
  116. *> \verbatim
  117. *> IU is INTEGER
  118. *> If RANGE='I', the indices (in ascending order) of the
  119. *> smallest and largest eigenvalues to be returned.
  120. *> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
  121. *> Not referenced if RANGE = 'A' or 'V'.
  122. *> \endverbatim
  123. *>
  124. *> \param[in] ABSTOL
  125. *> \verbatim
  126. *> ABSTOL is DOUBLE PRECISION
  127. *> The absolute error tolerance for the eigenvalues.
  128. *> An approximate eigenvalue is accepted as converged
  129. *> when it is determined to lie in an interval [a,b]
  130. *> of width less than or equal to
  131. *>
  132. *> ABSTOL + EPS * max( |a|,|b| ) ,
  133. *>
  134. *> where EPS is the machine precision. If ABSTOL is less than
  135. *> or equal to zero, then EPS*|T| will be used in its place,
  136. *> where |T| is the 1-norm of the tridiagonal matrix obtained
  137. *> by reducing AP to tridiagonal form.
  138. *>
  139. *> Eigenvalues will be computed most accurately when ABSTOL is
  140. *> set to twice the underflow threshold 2*DLAMCH('S'), not zero.
  141. *> If this routine returns with INFO>0, indicating that some
  142. *> eigenvectors did not converge, try setting ABSTOL to
  143. *> 2*DLAMCH('S').
  144. *>
  145. *> See "Computing Small Singular Values of Bidiagonal Matrices
  146. *> with Guaranteed High Relative Accuracy," by Demmel and
  147. *> Kahan, LAPACK Working Note #3.
  148. *> \endverbatim
  149. *>
  150. *> \param[out] M
  151. *> \verbatim
  152. *> M is INTEGER
  153. *> The total number of eigenvalues found. 0 <= M <= N.
  154. *> If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
  155. *> \endverbatim
  156. *>
  157. *> \param[out] W
  158. *> \verbatim
  159. *> W is DOUBLE PRECISION array, dimension (N)
  160. *> If INFO = 0, the selected eigenvalues in ascending order.
  161. *> \endverbatim
  162. *>
  163. *> \param[out] Z
  164. *> \verbatim
  165. *> Z is COMPLEX*16 array, dimension (LDZ, max(1,M))
  166. *> If JOBZ = 'V', then if INFO = 0, the first M columns of Z
  167. *> contain the orthonormal eigenvectors of the matrix A
  168. *> corresponding to the selected eigenvalues, with the i-th
  169. *> column of Z holding the eigenvector associated with W(i).
  170. *> If an eigenvector fails to converge, then that column of Z
  171. *> contains the latest approximation to the eigenvector, and
  172. *> the index of the eigenvector is returned in IFAIL.
  173. *> If JOBZ = 'N', then Z is not referenced.
  174. *> Note: the user must ensure that at least max(1,M) columns are
  175. *> supplied in the array Z; if RANGE = 'V', the exact value of M
  176. *> is not known in advance and an upper bound must be used.
  177. *> \endverbatim
  178. *>
  179. *> \param[in] LDZ
  180. *> \verbatim
  181. *> LDZ is INTEGER
  182. *> The leading dimension of the array Z. LDZ >= 1, and if
  183. *> JOBZ = 'V', LDZ >= max(1,N).
  184. *> \endverbatim
  185. *>
  186. *> \param[out] WORK
  187. *> \verbatim
  188. *> WORK is COMPLEX*16 array, dimension (2*N)
  189. *> \endverbatim
  190. *>
  191. *> \param[out] RWORK
  192. *> \verbatim
  193. *> RWORK is DOUBLE PRECISION array, dimension (7*N)
  194. *> \endverbatim
  195. *>
  196. *> \param[out] IWORK
  197. *> \verbatim
  198. *> IWORK is INTEGER array, dimension (5*N)
  199. *> \endverbatim
  200. *>
  201. *> \param[out] IFAIL
  202. *> \verbatim
  203. *> IFAIL is INTEGER array, dimension (N)
  204. *> If JOBZ = 'V', then if INFO = 0, the first M elements of
  205. *> IFAIL are zero. If INFO > 0, then IFAIL contains the
  206. *> indices of the eigenvectors that failed to converge.
  207. *> If JOBZ = 'N', then IFAIL is not referenced.
  208. *> \endverbatim
  209. *>
  210. *> \param[out] INFO
  211. *> \verbatim
  212. *> INFO is INTEGER
  213. *> = 0: successful exit
  214. *> < 0: if INFO = -i, the i-th argument had an illegal value
  215. *> > 0: if INFO = i, then i eigenvectors failed to converge.
  216. *> Their indices are stored in array IFAIL.
  217. *> \endverbatim
  218. *
  219. * Authors:
  220. * ========
  221. *
  222. *> \author Univ. of Tennessee
  223. *> \author Univ. of California Berkeley
  224. *> \author Univ. of Colorado Denver
  225. *> \author NAG Ltd.
  226. *
  227. *> \date November 2011
  228. *
  229. *> \ingroup complex16OTHEReigen
  230. *
  231. * =====================================================================
  232. SUBROUTINE ZHPEVX( JOBZ, RANGE, UPLO, N, AP, VL, VU, IL, IU,
  233. $ ABSTOL, M, W, Z, LDZ, WORK, RWORK, IWORK,
  234. $ IFAIL, INFO )
  235. *
  236. * -- LAPACK driver routine (version 3.4.0) --
  237. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  238. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  239. * November 2011
  240. *
  241. * .. Scalar Arguments ..
  242. CHARACTER JOBZ, RANGE, UPLO
  243. INTEGER IL, INFO, IU, LDZ, M, N
  244. DOUBLE PRECISION ABSTOL, VL, VU
  245. * ..
  246. * .. Array Arguments ..
  247. INTEGER IFAIL( * ), IWORK( * )
  248. DOUBLE PRECISION RWORK( * ), W( * )
  249. COMPLEX*16 AP( * ), WORK( * ), Z( LDZ, * )
  250. * ..
  251. *
  252. * =====================================================================
  253. *
  254. * .. Parameters ..
  255. DOUBLE PRECISION ZERO, ONE
  256. PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
  257. COMPLEX*16 CONE
  258. PARAMETER ( CONE = ( 1.0D0, 0.0D0 ) )
  259. * ..
  260. * .. Local Scalars ..
  261. LOGICAL ALLEIG, INDEIG, TEST, VALEIG, WANTZ
  262. CHARACTER ORDER
  263. INTEGER I, IINFO, IMAX, INDD, INDE, INDEE, INDIBL,
  264. $ INDISP, INDIWK, INDRWK, INDTAU, INDWRK, ISCALE,
  265. $ ITMP1, J, JJ, NSPLIT
  266. DOUBLE PRECISION ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
  267. $ SIGMA, SMLNUM, TMP1, VLL, VUU
  268. * ..
  269. * .. External Functions ..
  270. LOGICAL LSAME
  271. DOUBLE PRECISION DLAMCH, ZLANHP
  272. EXTERNAL LSAME, DLAMCH, ZLANHP
  273. * ..
  274. * .. External Subroutines ..
  275. EXTERNAL DCOPY, DSCAL, DSTEBZ, DSTERF, XERBLA, ZDSCAL,
  276. $ ZHPTRD, ZSTEIN, ZSTEQR, ZSWAP, ZUPGTR, ZUPMTR
  277. * ..
  278. * .. Intrinsic Functions ..
  279. INTRINSIC DBLE, MAX, MIN, SQRT
  280. * ..
  281. * .. Executable Statements ..
  282. *
  283. * Test the input parameters.
  284. *
  285. WANTZ = LSAME( JOBZ, 'V' )
  286. ALLEIG = LSAME( RANGE, 'A' )
  287. VALEIG = LSAME( RANGE, 'V' )
  288. INDEIG = LSAME( RANGE, 'I' )
  289. *
  290. INFO = 0
  291. IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  292. INFO = -1
  293. ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
  294. INFO = -2
  295. ELSE IF( .NOT.( LSAME( UPLO, 'L' ) .OR. LSAME( UPLO, 'U' ) ) )
  296. $ THEN
  297. INFO = -3
  298. ELSE IF( N.LT.0 ) THEN
  299. INFO = -4
  300. ELSE
  301. IF( VALEIG ) THEN
  302. IF( N.GT.0 .AND. VU.LE.VL )
  303. $ INFO = -7
  304. ELSE IF( INDEIG ) THEN
  305. IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
  306. INFO = -8
  307. ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
  308. INFO = -9
  309. END IF
  310. END IF
  311. END IF
  312. IF( INFO.EQ.0 ) THEN
  313. IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) )
  314. $ INFO = -14
  315. END IF
  316. *
  317. IF( INFO.NE.0 ) THEN
  318. CALL XERBLA( 'ZHPEVX', -INFO )
  319. RETURN
  320. END IF
  321. *
  322. * Quick return if possible
  323. *
  324. M = 0
  325. IF( N.EQ.0 )
  326. $ RETURN
  327. *
  328. IF( N.EQ.1 ) THEN
  329. IF( ALLEIG .OR. INDEIG ) THEN
  330. M = 1
  331. W( 1 ) = AP( 1 )
  332. ELSE
  333. IF( VL.LT.DBLE( AP( 1 ) ) .AND. VU.GE.DBLE( AP( 1 ) ) ) THEN
  334. M = 1
  335. W( 1 ) = AP( 1 )
  336. END IF
  337. END IF
  338. IF( WANTZ )
  339. $ Z( 1, 1 ) = CONE
  340. RETURN
  341. END IF
  342. *
  343. * Get machine constants.
  344. *
  345. SAFMIN = DLAMCH( 'Safe minimum' )
  346. EPS = DLAMCH( 'Precision' )
  347. SMLNUM = SAFMIN / EPS
  348. BIGNUM = ONE / SMLNUM
  349. RMIN = SQRT( SMLNUM )
  350. RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
  351. *
  352. * Scale matrix to allowable range, if necessary.
  353. *
  354. ISCALE = 0
  355. ABSTLL = ABSTOL
  356. IF( VALEIG ) THEN
  357. VLL = VL
  358. VUU = VU
  359. ELSE
  360. VLL = ZERO
  361. VUU = ZERO
  362. END IF
  363. ANRM = ZLANHP( 'M', UPLO, N, AP, RWORK )
  364. IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
  365. ISCALE = 1
  366. SIGMA = RMIN / ANRM
  367. ELSE IF( ANRM.GT.RMAX ) THEN
  368. ISCALE = 1
  369. SIGMA = RMAX / ANRM
  370. END IF
  371. IF( ISCALE.EQ.1 ) THEN
  372. CALL ZDSCAL( ( N*( N+1 ) ) / 2, SIGMA, AP, 1 )
  373. IF( ABSTOL.GT.0 )
  374. $ ABSTLL = ABSTOL*SIGMA
  375. IF( VALEIG ) THEN
  376. VLL = VL*SIGMA
  377. VUU = VU*SIGMA
  378. END IF
  379. END IF
  380. *
  381. * Call ZHPTRD to reduce Hermitian packed matrix to tridiagonal form.
  382. *
  383. INDD = 1
  384. INDE = INDD + N
  385. INDRWK = INDE + N
  386. INDTAU = 1
  387. INDWRK = INDTAU + N
  388. CALL ZHPTRD( UPLO, N, AP, RWORK( INDD ), RWORK( INDE ),
  389. $ WORK( INDTAU ), IINFO )
  390. *
  391. * If all eigenvalues are desired and ABSTOL is less than or equal
  392. * to zero, then call DSTERF or ZUPGTR and ZSTEQR. If this fails
  393. * for some eigenvalue, then try DSTEBZ.
  394. *
  395. TEST = .FALSE.
  396. IF (INDEIG) THEN
  397. IF (IL.EQ.1 .AND. IU.EQ.N) THEN
  398. TEST = .TRUE.
  399. END IF
  400. END IF
  401. IF ((ALLEIG .OR. TEST) .AND. (ABSTOL.LE.ZERO)) THEN
  402. CALL DCOPY( N, RWORK( INDD ), 1, W, 1 )
  403. INDEE = INDRWK + 2*N
  404. IF( .NOT.WANTZ ) THEN
  405. CALL DCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
  406. CALL DSTERF( N, W, RWORK( INDEE ), INFO )
  407. ELSE
  408. CALL ZUPGTR( UPLO, N, AP, WORK( INDTAU ), Z, LDZ,
  409. $ WORK( INDWRK ), IINFO )
  410. CALL DCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
  411. CALL ZSTEQR( JOBZ, N, W, RWORK( INDEE ), Z, LDZ,
  412. $ RWORK( INDRWK ), INFO )
  413. IF( INFO.EQ.0 ) THEN
  414. DO 10 I = 1, N
  415. IFAIL( I ) = 0
  416. 10 CONTINUE
  417. END IF
  418. END IF
  419. IF( INFO.EQ.0 ) THEN
  420. M = N
  421. GO TO 20
  422. END IF
  423. INFO = 0
  424. END IF
  425. *
  426. * Otherwise, call DSTEBZ and, if eigenvectors are desired, ZSTEIN.
  427. *
  428. IF( WANTZ ) THEN
  429. ORDER = 'B'
  430. ELSE
  431. ORDER = 'E'
  432. END IF
  433. INDIBL = 1
  434. INDISP = INDIBL + N
  435. INDIWK = INDISP + N
  436. CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
  437. $ RWORK( INDD ), RWORK( INDE ), M, NSPLIT, W,
  438. $ IWORK( INDIBL ), IWORK( INDISP ), RWORK( INDRWK ),
  439. $ IWORK( INDIWK ), INFO )
  440. *
  441. IF( WANTZ ) THEN
  442. CALL ZSTEIN( N, RWORK( INDD ), RWORK( INDE ), M, W,
  443. $ IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
  444. $ RWORK( INDRWK ), IWORK( INDIWK ), IFAIL, INFO )
  445. *
  446. * Apply unitary matrix used in reduction to tridiagonal
  447. * form to eigenvectors returned by ZSTEIN.
  448. *
  449. INDWRK = INDTAU + N
  450. CALL ZUPMTR( 'L', UPLO, 'N', N, M, AP, WORK( INDTAU ), Z, LDZ,
  451. $ WORK( INDWRK ), IINFO )
  452. END IF
  453. *
  454. * If matrix was scaled, then rescale eigenvalues appropriately.
  455. *
  456. 20 CONTINUE
  457. IF( ISCALE.EQ.1 ) THEN
  458. IF( INFO.EQ.0 ) THEN
  459. IMAX = M
  460. ELSE
  461. IMAX = INFO - 1
  462. END IF
  463. CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
  464. END IF
  465. *
  466. * If eigenvalues are not in order, then sort them, along with
  467. * eigenvectors.
  468. *
  469. IF( WANTZ ) THEN
  470. DO 40 J = 1, M - 1
  471. I = 0
  472. TMP1 = W( J )
  473. DO 30 JJ = J + 1, M
  474. IF( W( JJ ).LT.TMP1 ) THEN
  475. I = JJ
  476. TMP1 = W( JJ )
  477. END IF
  478. 30 CONTINUE
  479. *
  480. IF( I.NE.0 ) THEN
  481. ITMP1 = IWORK( INDIBL+I-1 )
  482. W( I ) = W( J )
  483. IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
  484. W( J ) = TMP1
  485. IWORK( INDIBL+J-1 ) = ITMP1
  486. CALL ZSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
  487. IF( INFO.NE.0 ) THEN
  488. ITMP1 = IFAIL( I )
  489. IFAIL( I ) = IFAIL( J )
  490. IFAIL( J ) = ITMP1
  491. END IF
  492. END IF
  493. 40 CONTINUE
  494. END IF
  495. *
  496. RETURN
  497. *
  498. * End of ZHPEVX
  499. *
  500. END