You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sspgv.f 8.3 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278
  1. *> \brief \b SSPGST
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SSPGV + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sspgv.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sspgv.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sspgv.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE SSPGV( ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK,
  22. * INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER JOBZ, UPLO
  26. * INTEGER INFO, ITYPE, LDZ, N
  27. * ..
  28. * .. Array Arguments ..
  29. * REAL AP( * ), BP( * ), W( * ), WORK( * ),
  30. * $ Z( LDZ, * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> SSPGV computes all the eigenvalues and, optionally, the eigenvectors
  40. *> of a real generalized symmetric-definite eigenproblem, of the form
  41. *> A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x.
  42. *> Here A and B are assumed to be symmetric, stored in packed format,
  43. *> and B is also positive definite.
  44. *> \endverbatim
  45. *
  46. * Arguments:
  47. * ==========
  48. *
  49. *> \param[in] ITYPE
  50. *> \verbatim
  51. *> ITYPE is INTEGER
  52. *> Specifies the problem type to be solved:
  53. *> = 1: A*x = (lambda)*B*x
  54. *> = 2: A*B*x = (lambda)*x
  55. *> = 3: B*A*x = (lambda)*x
  56. *> \endverbatim
  57. *>
  58. *> \param[in] JOBZ
  59. *> \verbatim
  60. *> JOBZ is CHARACTER*1
  61. *> = 'N': Compute eigenvalues only;
  62. *> = 'V': Compute eigenvalues and eigenvectors.
  63. *> \endverbatim
  64. *>
  65. *> \param[in] UPLO
  66. *> \verbatim
  67. *> UPLO is CHARACTER*1
  68. *> = 'U': Upper triangles of A and B are stored;
  69. *> = 'L': Lower triangles of A and B are stored.
  70. *> \endverbatim
  71. *>
  72. *> \param[in] N
  73. *> \verbatim
  74. *> N is INTEGER
  75. *> The order of the matrices A and B. N >= 0.
  76. *> \endverbatim
  77. *>
  78. *> \param[in,out] AP
  79. *> \verbatim
  80. *> AP is REAL array, dimension
  81. *> (N*(N+1)/2)
  82. *> On entry, the upper or lower triangle of the symmetric matrix
  83. *> A, packed columnwise in a linear array. The j-th column of A
  84. *> is stored in the array AP as follows:
  85. *> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
  86. *> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
  87. *>
  88. *> On exit, the contents of AP are destroyed.
  89. *> \endverbatim
  90. *>
  91. *> \param[in,out] BP
  92. *> \verbatim
  93. *> BP is REAL array, dimension (N*(N+1)/2)
  94. *> On entry, the upper or lower triangle of the symmetric matrix
  95. *> B, packed columnwise in a linear array. The j-th column of B
  96. *> is stored in the array BP as follows:
  97. *> if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
  98. *> if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
  99. *>
  100. *> On exit, the triangular factor U or L from the Cholesky
  101. *> factorization B = U**T*U or B = L*L**T, in the same storage
  102. *> format as B.
  103. *> \endverbatim
  104. *>
  105. *> \param[out] W
  106. *> \verbatim
  107. *> W is REAL array, dimension (N)
  108. *> If INFO = 0, the eigenvalues in ascending order.
  109. *> \endverbatim
  110. *>
  111. *> \param[out] Z
  112. *> \verbatim
  113. *> Z is REAL array, dimension (LDZ, N)
  114. *> If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
  115. *> eigenvectors. The eigenvectors are normalized as follows:
  116. *> if ITYPE = 1 or 2, Z**T*B*Z = I;
  117. *> if ITYPE = 3, Z**T*inv(B)*Z = I.
  118. *> If JOBZ = 'N', then Z is not referenced.
  119. *> \endverbatim
  120. *>
  121. *> \param[in] LDZ
  122. *> \verbatim
  123. *> LDZ is INTEGER
  124. *> The leading dimension of the array Z. LDZ >= 1, and if
  125. *> JOBZ = 'V', LDZ >= max(1,N).
  126. *> \endverbatim
  127. *>
  128. *> \param[out] WORK
  129. *> \verbatim
  130. *> WORK is REAL array, dimension (3*N)
  131. *> \endverbatim
  132. *>
  133. *> \param[out] INFO
  134. *> \verbatim
  135. *> INFO is INTEGER
  136. *> = 0: successful exit
  137. *> < 0: if INFO = -i, the i-th argument had an illegal value
  138. *> > 0: SPPTRF or SSPEV returned an error code:
  139. *> <= N: if INFO = i, SSPEV failed to converge;
  140. *> i off-diagonal elements of an intermediate
  141. *> tridiagonal form did not converge to zero.
  142. *> > N: if INFO = n + i, for 1 <= i <= n, then the leading
  143. *> minor of order i of B is not positive definite.
  144. *> The factorization of B could not be completed and
  145. *> no eigenvalues or eigenvectors were computed.
  146. *> \endverbatim
  147. *
  148. * Authors:
  149. * ========
  150. *
  151. *> \author Univ. of Tennessee
  152. *> \author Univ. of California Berkeley
  153. *> \author Univ. of Colorado Denver
  154. *> \author NAG Ltd.
  155. *
  156. *> \date November 2011
  157. *
  158. *> \ingroup realOTHEReigen
  159. *
  160. * =====================================================================
  161. SUBROUTINE SSPGV( ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK,
  162. $ INFO )
  163. *
  164. * -- LAPACK driver routine (version 3.4.0) --
  165. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  166. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  167. * November 2011
  168. *
  169. * .. Scalar Arguments ..
  170. CHARACTER JOBZ, UPLO
  171. INTEGER INFO, ITYPE, LDZ, N
  172. * ..
  173. * .. Array Arguments ..
  174. REAL AP( * ), BP( * ), W( * ), WORK( * ),
  175. $ Z( LDZ, * )
  176. * ..
  177. *
  178. * =====================================================================
  179. *
  180. * .. Local Scalars ..
  181. LOGICAL UPPER, WANTZ
  182. CHARACTER TRANS
  183. INTEGER J, NEIG
  184. * ..
  185. * .. External Functions ..
  186. LOGICAL LSAME
  187. EXTERNAL LSAME
  188. * ..
  189. * .. External Subroutines ..
  190. EXTERNAL SPPTRF, SSPEV, SSPGST, STPMV, STPSV, XERBLA
  191. * ..
  192. * .. Executable Statements ..
  193. *
  194. * Test the input parameters.
  195. *
  196. WANTZ = LSAME( JOBZ, 'V' )
  197. UPPER = LSAME( UPLO, 'U' )
  198. *
  199. INFO = 0
  200. IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
  201. INFO = -1
  202. ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  203. INFO = -2
  204. ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
  205. INFO = -3
  206. ELSE IF( N.LT.0 ) THEN
  207. INFO = -4
  208. ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
  209. INFO = -9
  210. END IF
  211. IF( INFO.NE.0 ) THEN
  212. CALL XERBLA( 'SSPGV ', -INFO )
  213. RETURN
  214. END IF
  215. *
  216. * Quick return if possible
  217. *
  218. IF( N.EQ.0 )
  219. $ RETURN
  220. *
  221. * Form a Cholesky factorization of B.
  222. *
  223. CALL SPPTRF( UPLO, N, BP, INFO )
  224. IF( INFO.NE.0 ) THEN
  225. INFO = N + INFO
  226. RETURN
  227. END IF
  228. *
  229. * Transform problem to standard eigenvalue problem and solve.
  230. *
  231. CALL SSPGST( ITYPE, UPLO, N, AP, BP, INFO )
  232. CALL SSPEV( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, INFO )
  233. *
  234. IF( WANTZ ) THEN
  235. *
  236. * Backtransform eigenvectors to the original problem.
  237. *
  238. NEIG = N
  239. IF( INFO.GT.0 )
  240. $ NEIG = INFO - 1
  241. IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
  242. *
  243. * For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
  244. * backtransform eigenvectors: x = inv(L)**T*y or inv(U)*y
  245. *
  246. IF( UPPER ) THEN
  247. TRANS = 'N'
  248. ELSE
  249. TRANS = 'T'
  250. END IF
  251. *
  252. DO 10 J = 1, NEIG
  253. CALL STPSV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
  254. $ 1 )
  255. 10 CONTINUE
  256. *
  257. ELSE IF( ITYPE.EQ.3 ) THEN
  258. *
  259. * For B*A*x=(lambda)*x;
  260. * backtransform eigenvectors: x = L*y or U**T*y
  261. *
  262. IF( UPPER ) THEN
  263. TRANS = 'T'
  264. ELSE
  265. TRANS = 'N'
  266. END IF
  267. *
  268. DO 20 J = 1, NEIG
  269. CALL STPMV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
  270. $ 1 )
  271. 20 CONTINUE
  272. END IF
  273. END IF
  274. RETURN
  275. *
  276. * End of SSPGV
  277. *
  278. END