You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sorg2l.f 5.2 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198
  1. *> \brief \b SORG2L generates all or part of the orthogonal matrix Q from a QL factorization determined by sgeqlf (unblocked algorithm).
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SORG2L + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sorg2l.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sorg2l.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sorg2l.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE SORG2L( M, N, K, A, LDA, TAU, WORK, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * INTEGER INFO, K, LDA, M, N
  25. * ..
  26. * .. Array Arguments ..
  27. * REAL A( LDA, * ), TAU( * ), WORK( * )
  28. * ..
  29. *
  30. *
  31. *> \par Purpose:
  32. * =============
  33. *>
  34. *> \verbatim
  35. *>
  36. *> SORG2L generates an m by n real matrix Q with orthonormal columns,
  37. *> which is defined as the last n columns of a product of k elementary
  38. *> reflectors of order m
  39. *>
  40. *> Q = H(k) . . . H(2) H(1)
  41. *>
  42. *> as returned by SGEQLF.
  43. *> \endverbatim
  44. *
  45. * Arguments:
  46. * ==========
  47. *
  48. *> \param[in] M
  49. *> \verbatim
  50. *> M is INTEGER
  51. *> The number of rows of the matrix Q. M >= 0.
  52. *> \endverbatim
  53. *>
  54. *> \param[in] N
  55. *> \verbatim
  56. *> N is INTEGER
  57. *> The number of columns of the matrix Q. M >= N >= 0.
  58. *> \endverbatim
  59. *>
  60. *> \param[in] K
  61. *> \verbatim
  62. *> K is INTEGER
  63. *> The number of elementary reflectors whose product defines the
  64. *> matrix Q. N >= K >= 0.
  65. *> \endverbatim
  66. *>
  67. *> \param[in,out] A
  68. *> \verbatim
  69. *> A is REAL array, dimension (LDA,N)
  70. *> On entry, the (n-k+i)-th column must contain the vector which
  71. *> defines the elementary reflector H(i), for i = 1,2,...,k, as
  72. *> returned by SGEQLF in the last k columns of its array
  73. *> argument A.
  74. *> On exit, the m by n matrix Q.
  75. *> \endverbatim
  76. *>
  77. *> \param[in] LDA
  78. *> \verbatim
  79. *> LDA is INTEGER
  80. *> The first dimension of the array A. LDA >= max(1,M).
  81. *> \endverbatim
  82. *>
  83. *> \param[in] TAU
  84. *> \verbatim
  85. *> TAU is REAL array, dimension (K)
  86. *> TAU(i) must contain the scalar factor of the elementary
  87. *> reflector H(i), as returned by SGEQLF.
  88. *> \endverbatim
  89. *>
  90. *> \param[out] WORK
  91. *> \verbatim
  92. *> WORK is REAL array, dimension (N)
  93. *> \endverbatim
  94. *>
  95. *> \param[out] INFO
  96. *> \verbatim
  97. *> INFO is INTEGER
  98. *> = 0: successful exit
  99. *> < 0: if INFO = -i, the i-th argument has an illegal value
  100. *> \endverbatim
  101. *
  102. * Authors:
  103. * ========
  104. *
  105. *> \author Univ. of Tennessee
  106. *> \author Univ. of California Berkeley
  107. *> \author Univ. of Colorado Denver
  108. *> \author NAG Ltd.
  109. *
  110. *> \date September 2012
  111. *
  112. *> \ingroup realOTHERcomputational
  113. *
  114. * =====================================================================
  115. SUBROUTINE SORG2L( M, N, K, A, LDA, TAU, WORK, INFO )
  116. *
  117. * -- LAPACK computational routine (version 3.4.2) --
  118. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  119. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  120. * September 2012
  121. *
  122. * .. Scalar Arguments ..
  123. INTEGER INFO, K, LDA, M, N
  124. * ..
  125. * .. Array Arguments ..
  126. REAL A( LDA, * ), TAU( * ), WORK( * )
  127. * ..
  128. *
  129. * =====================================================================
  130. *
  131. * .. Parameters ..
  132. REAL ONE, ZERO
  133. PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
  134. * ..
  135. * .. Local Scalars ..
  136. INTEGER I, II, J, L
  137. * ..
  138. * .. External Subroutines ..
  139. EXTERNAL SLARF, SSCAL, XERBLA
  140. * ..
  141. * .. Intrinsic Functions ..
  142. INTRINSIC MAX
  143. * ..
  144. * .. Executable Statements ..
  145. *
  146. * Test the input arguments
  147. *
  148. INFO = 0
  149. IF( M.LT.0 ) THEN
  150. INFO = -1
  151. ELSE IF( N.LT.0 .OR. N.GT.M ) THEN
  152. INFO = -2
  153. ELSE IF( K.LT.0 .OR. K.GT.N ) THEN
  154. INFO = -3
  155. ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  156. INFO = -5
  157. END IF
  158. IF( INFO.NE.0 ) THEN
  159. CALL XERBLA( 'SORG2L', -INFO )
  160. RETURN
  161. END IF
  162. *
  163. * Quick return if possible
  164. *
  165. IF( N.LE.0 )
  166. $ RETURN
  167. *
  168. * Initialise columns 1:n-k to columns of the unit matrix
  169. *
  170. DO 20 J = 1, N - K
  171. DO 10 L = 1, M
  172. A( L, J ) = ZERO
  173. 10 CONTINUE
  174. A( M-N+J, J ) = ONE
  175. 20 CONTINUE
  176. *
  177. DO 40 I = 1, K
  178. II = N - K + I
  179. *
  180. * Apply H(i) to A(1:m-k+i,1:n-k+i) from the left
  181. *
  182. A( M-N+II, II ) = ONE
  183. CALL SLARF( 'Left', M-N+II, II-1, A( 1, II ), 1, TAU( I ), A,
  184. $ LDA, WORK )
  185. CALL SSCAL( M-N+II-1, -TAU( I ), A( 1, II ), 1 )
  186. A( M-N+II, II ) = ONE - TAU( I )
  187. *
  188. * Set A(m-k+i+1:m,n-k+i) to zero
  189. *
  190. DO 30 L = M - N + II + 1, M
  191. A( L, II ) = ZERO
  192. 30 CONTINUE
  193. 40 CONTINUE
  194. RETURN
  195. *
  196. * End of SORG2L
  197. *
  198. END