You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

slasr.f 15 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436
  1. *> \brief \b SLASR applies a sequence of plane rotations to a general rectangular matrix.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SLASR + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasr.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasr.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasr.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE SLASR( SIDE, PIVOT, DIRECT, M, N, C, S, A, LDA )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER DIRECT, PIVOT, SIDE
  25. * INTEGER LDA, M, N
  26. * ..
  27. * .. Array Arguments ..
  28. * REAL A( LDA, * ), C( * ), S( * )
  29. * ..
  30. *
  31. *
  32. *> \par Purpose:
  33. * =============
  34. *>
  35. *> \verbatim
  36. *>
  37. *> SLASR applies a sequence of plane rotations to a real matrix A,
  38. *> from either the left or the right.
  39. *>
  40. *> When SIDE = 'L', the transformation takes the form
  41. *>
  42. *> A := P*A
  43. *>
  44. *> and when SIDE = 'R', the transformation takes the form
  45. *>
  46. *> A := A*P**T
  47. *>
  48. *> where P is an orthogonal matrix consisting of a sequence of z plane
  49. *> rotations, with z = M when SIDE = 'L' and z = N when SIDE = 'R',
  50. *> and P**T is the transpose of P.
  51. *>
  52. *> When DIRECT = 'F' (Forward sequence), then
  53. *>
  54. *> P = P(z-1) * ... * P(2) * P(1)
  55. *>
  56. *> and when DIRECT = 'B' (Backward sequence), then
  57. *>
  58. *> P = P(1) * P(2) * ... * P(z-1)
  59. *>
  60. *> where P(k) is a plane rotation matrix defined by the 2-by-2 rotation
  61. *>
  62. *> R(k) = ( c(k) s(k) )
  63. *> = ( -s(k) c(k) ).
  64. *>
  65. *> When PIVOT = 'V' (Variable pivot), the rotation is performed
  66. *> for the plane (k,k+1), i.e., P(k) has the form
  67. *>
  68. *> P(k) = ( 1 )
  69. *> ( ... )
  70. *> ( 1 )
  71. *> ( c(k) s(k) )
  72. *> ( -s(k) c(k) )
  73. *> ( 1 )
  74. *> ( ... )
  75. *> ( 1 )
  76. *>
  77. *> where R(k) appears as a rank-2 modification to the identity matrix in
  78. *> rows and columns k and k+1.
  79. *>
  80. *> When PIVOT = 'T' (Top pivot), the rotation is performed for the
  81. *> plane (1,k+1), so P(k) has the form
  82. *>
  83. *> P(k) = ( c(k) s(k) )
  84. *> ( 1 )
  85. *> ( ... )
  86. *> ( 1 )
  87. *> ( -s(k) c(k) )
  88. *> ( 1 )
  89. *> ( ... )
  90. *> ( 1 )
  91. *>
  92. *> where R(k) appears in rows and columns 1 and k+1.
  93. *>
  94. *> Similarly, when PIVOT = 'B' (Bottom pivot), the rotation is
  95. *> performed for the plane (k,z), giving P(k) the form
  96. *>
  97. *> P(k) = ( 1 )
  98. *> ( ... )
  99. *> ( 1 )
  100. *> ( c(k) s(k) )
  101. *> ( 1 )
  102. *> ( ... )
  103. *> ( 1 )
  104. *> ( -s(k) c(k) )
  105. *>
  106. *> where R(k) appears in rows and columns k and z. The rotations are
  107. *> performed without ever forming P(k) explicitly.
  108. *> \endverbatim
  109. *
  110. * Arguments:
  111. * ==========
  112. *
  113. *> \param[in] SIDE
  114. *> \verbatim
  115. *> SIDE is CHARACTER*1
  116. *> Specifies whether the plane rotation matrix P is applied to
  117. *> A on the left or the right.
  118. *> = 'L': Left, compute A := P*A
  119. *> = 'R': Right, compute A:= A*P**T
  120. *> \endverbatim
  121. *>
  122. *> \param[in] PIVOT
  123. *> \verbatim
  124. *> PIVOT is CHARACTER*1
  125. *> Specifies the plane for which P(k) is a plane rotation
  126. *> matrix.
  127. *> = 'V': Variable pivot, the plane (k,k+1)
  128. *> = 'T': Top pivot, the plane (1,k+1)
  129. *> = 'B': Bottom pivot, the plane (k,z)
  130. *> \endverbatim
  131. *>
  132. *> \param[in] DIRECT
  133. *> \verbatim
  134. *> DIRECT is CHARACTER*1
  135. *> Specifies whether P is a forward or backward sequence of
  136. *> plane rotations.
  137. *> = 'F': Forward, P = P(z-1)*...*P(2)*P(1)
  138. *> = 'B': Backward, P = P(1)*P(2)*...*P(z-1)
  139. *> \endverbatim
  140. *>
  141. *> \param[in] M
  142. *> \verbatim
  143. *> M is INTEGER
  144. *> The number of rows of the matrix A. If m <= 1, an immediate
  145. *> return is effected.
  146. *> \endverbatim
  147. *>
  148. *> \param[in] N
  149. *> \verbatim
  150. *> N is INTEGER
  151. *> The number of columns of the matrix A. If n <= 1, an
  152. *> immediate return is effected.
  153. *> \endverbatim
  154. *>
  155. *> \param[in] C
  156. *> \verbatim
  157. *> C is REAL array, dimension
  158. *> (M-1) if SIDE = 'L'
  159. *> (N-1) if SIDE = 'R'
  160. *> The cosines c(k) of the plane rotations.
  161. *> \endverbatim
  162. *>
  163. *> \param[in] S
  164. *> \verbatim
  165. *> S is REAL array, dimension
  166. *> (M-1) if SIDE = 'L'
  167. *> (N-1) if SIDE = 'R'
  168. *> The sines s(k) of the plane rotations. The 2-by-2 plane
  169. *> rotation part of the matrix P(k), R(k), has the form
  170. *> R(k) = ( c(k) s(k) )
  171. *> ( -s(k) c(k) ).
  172. *> \endverbatim
  173. *>
  174. *> \param[in,out] A
  175. *> \verbatim
  176. *> A is REAL array, dimension (LDA,N)
  177. *> The M-by-N matrix A. On exit, A is overwritten by P*A if
  178. *> SIDE = 'R' or by A*P**T if SIDE = 'L'.
  179. *> \endverbatim
  180. *>
  181. *> \param[in] LDA
  182. *> \verbatim
  183. *> LDA is INTEGER
  184. *> The leading dimension of the array A. LDA >= max(1,M).
  185. *> \endverbatim
  186. *
  187. * Authors:
  188. * ========
  189. *
  190. *> \author Univ. of Tennessee
  191. *> \author Univ. of California Berkeley
  192. *> \author Univ. of Colorado Denver
  193. *> \author NAG Ltd.
  194. *
  195. *> \date September 2012
  196. *
  197. *> \ingroup auxOTHERauxiliary
  198. *
  199. * =====================================================================
  200. SUBROUTINE SLASR( SIDE, PIVOT, DIRECT, M, N, C, S, A, LDA )
  201. *
  202. * -- LAPACK auxiliary routine (version 3.4.2) --
  203. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  204. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  205. * September 2012
  206. *
  207. * .. Scalar Arguments ..
  208. CHARACTER DIRECT, PIVOT, SIDE
  209. INTEGER LDA, M, N
  210. * ..
  211. * .. Array Arguments ..
  212. REAL A( LDA, * ), C( * ), S( * )
  213. * ..
  214. *
  215. * =====================================================================
  216. *
  217. * .. Parameters ..
  218. REAL ONE, ZERO
  219. PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
  220. * ..
  221. * .. Local Scalars ..
  222. INTEGER I, INFO, J
  223. REAL CTEMP, STEMP, TEMP
  224. * ..
  225. * .. External Functions ..
  226. LOGICAL LSAME
  227. EXTERNAL LSAME
  228. * ..
  229. * .. External Subroutines ..
  230. EXTERNAL XERBLA
  231. * ..
  232. * .. Intrinsic Functions ..
  233. INTRINSIC MAX
  234. * ..
  235. * .. Executable Statements ..
  236. *
  237. * Test the input parameters
  238. *
  239. INFO = 0
  240. IF( .NOT.( LSAME( SIDE, 'L' ) .OR. LSAME( SIDE, 'R' ) ) ) THEN
  241. INFO = 1
  242. ELSE IF( .NOT.( LSAME( PIVOT, 'V' ) .OR. LSAME( PIVOT,
  243. $ 'T' ) .OR. LSAME( PIVOT, 'B' ) ) ) THEN
  244. INFO = 2
  245. ELSE IF( .NOT.( LSAME( DIRECT, 'F' ) .OR. LSAME( DIRECT, 'B' ) ) )
  246. $ THEN
  247. INFO = 3
  248. ELSE IF( M.LT.0 ) THEN
  249. INFO = 4
  250. ELSE IF( N.LT.0 ) THEN
  251. INFO = 5
  252. ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  253. INFO = 9
  254. END IF
  255. IF( INFO.NE.0 ) THEN
  256. CALL XERBLA( 'SLASR ', INFO )
  257. RETURN
  258. END IF
  259. *
  260. * Quick return if possible
  261. *
  262. IF( ( M.EQ.0 ) .OR. ( N.EQ.0 ) )
  263. $ RETURN
  264. IF( LSAME( SIDE, 'L' ) ) THEN
  265. *
  266. * Form P * A
  267. *
  268. IF( LSAME( PIVOT, 'V' ) ) THEN
  269. IF( LSAME( DIRECT, 'F' ) ) THEN
  270. DO 20 J = 1, M - 1
  271. CTEMP = C( J )
  272. STEMP = S( J )
  273. IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
  274. DO 10 I = 1, N
  275. TEMP = A( J+1, I )
  276. A( J+1, I ) = CTEMP*TEMP - STEMP*A( J, I )
  277. A( J, I ) = STEMP*TEMP + CTEMP*A( J, I )
  278. 10 CONTINUE
  279. END IF
  280. 20 CONTINUE
  281. ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
  282. DO 40 J = M - 1, 1, -1
  283. CTEMP = C( J )
  284. STEMP = S( J )
  285. IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
  286. DO 30 I = 1, N
  287. TEMP = A( J+1, I )
  288. A( J+1, I ) = CTEMP*TEMP - STEMP*A( J, I )
  289. A( J, I ) = STEMP*TEMP + CTEMP*A( J, I )
  290. 30 CONTINUE
  291. END IF
  292. 40 CONTINUE
  293. END IF
  294. ELSE IF( LSAME( PIVOT, 'T' ) ) THEN
  295. IF( LSAME( DIRECT, 'F' ) ) THEN
  296. DO 60 J = 2, M
  297. CTEMP = C( J-1 )
  298. STEMP = S( J-1 )
  299. IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
  300. DO 50 I = 1, N
  301. TEMP = A( J, I )
  302. A( J, I ) = CTEMP*TEMP - STEMP*A( 1, I )
  303. A( 1, I ) = STEMP*TEMP + CTEMP*A( 1, I )
  304. 50 CONTINUE
  305. END IF
  306. 60 CONTINUE
  307. ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
  308. DO 80 J = M, 2, -1
  309. CTEMP = C( J-1 )
  310. STEMP = S( J-1 )
  311. IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
  312. DO 70 I = 1, N
  313. TEMP = A( J, I )
  314. A( J, I ) = CTEMP*TEMP - STEMP*A( 1, I )
  315. A( 1, I ) = STEMP*TEMP + CTEMP*A( 1, I )
  316. 70 CONTINUE
  317. END IF
  318. 80 CONTINUE
  319. END IF
  320. ELSE IF( LSAME( PIVOT, 'B' ) ) THEN
  321. IF( LSAME( DIRECT, 'F' ) ) THEN
  322. DO 100 J = 1, M - 1
  323. CTEMP = C( J )
  324. STEMP = S( J )
  325. IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
  326. DO 90 I = 1, N
  327. TEMP = A( J, I )
  328. A( J, I ) = STEMP*A( M, I ) + CTEMP*TEMP
  329. A( M, I ) = CTEMP*A( M, I ) - STEMP*TEMP
  330. 90 CONTINUE
  331. END IF
  332. 100 CONTINUE
  333. ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
  334. DO 120 J = M - 1, 1, -1
  335. CTEMP = C( J )
  336. STEMP = S( J )
  337. IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
  338. DO 110 I = 1, N
  339. TEMP = A( J, I )
  340. A( J, I ) = STEMP*A( M, I ) + CTEMP*TEMP
  341. A( M, I ) = CTEMP*A( M, I ) - STEMP*TEMP
  342. 110 CONTINUE
  343. END IF
  344. 120 CONTINUE
  345. END IF
  346. END IF
  347. ELSE IF( LSAME( SIDE, 'R' ) ) THEN
  348. *
  349. * Form A * P**T
  350. *
  351. IF( LSAME( PIVOT, 'V' ) ) THEN
  352. IF( LSAME( DIRECT, 'F' ) ) THEN
  353. DO 140 J = 1, N - 1
  354. CTEMP = C( J )
  355. STEMP = S( J )
  356. IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
  357. DO 130 I = 1, M
  358. TEMP = A( I, J+1 )
  359. A( I, J+1 ) = CTEMP*TEMP - STEMP*A( I, J )
  360. A( I, J ) = STEMP*TEMP + CTEMP*A( I, J )
  361. 130 CONTINUE
  362. END IF
  363. 140 CONTINUE
  364. ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
  365. DO 160 J = N - 1, 1, -1
  366. CTEMP = C( J )
  367. STEMP = S( J )
  368. IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
  369. DO 150 I = 1, M
  370. TEMP = A( I, J+1 )
  371. A( I, J+1 ) = CTEMP*TEMP - STEMP*A( I, J )
  372. A( I, J ) = STEMP*TEMP + CTEMP*A( I, J )
  373. 150 CONTINUE
  374. END IF
  375. 160 CONTINUE
  376. END IF
  377. ELSE IF( LSAME( PIVOT, 'T' ) ) THEN
  378. IF( LSAME( DIRECT, 'F' ) ) THEN
  379. DO 180 J = 2, N
  380. CTEMP = C( J-1 )
  381. STEMP = S( J-1 )
  382. IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
  383. DO 170 I = 1, M
  384. TEMP = A( I, J )
  385. A( I, J ) = CTEMP*TEMP - STEMP*A( I, 1 )
  386. A( I, 1 ) = STEMP*TEMP + CTEMP*A( I, 1 )
  387. 170 CONTINUE
  388. END IF
  389. 180 CONTINUE
  390. ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
  391. DO 200 J = N, 2, -1
  392. CTEMP = C( J-1 )
  393. STEMP = S( J-1 )
  394. IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
  395. DO 190 I = 1, M
  396. TEMP = A( I, J )
  397. A( I, J ) = CTEMP*TEMP - STEMP*A( I, 1 )
  398. A( I, 1 ) = STEMP*TEMP + CTEMP*A( I, 1 )
  399. 190 CONTINUE
  400. END IF
  401. 200 CONTINUE
  402. END IF
  403. ELSE IF( LSAME( PIVOT, 'B' ) ) THEN
  404. IF( LSAME( DIRECT, 'F' ) ) THEN
  405. DO 220 J = 1, N - 1
  406. CTEMP = C( J )
  407. STEMP = S( J )
  408. IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
  409. DO 210 I = 1, M
  410. TEMP = A( I, J )
  411. A( I, J ) = STEMP*A( I, N ) + CTEMP*TEMP
  412. A( I, N ) = CTEMP*A( I, N ) - STEMP*TEMP
  413. 210 CONTINUE
  414. END IF
  415. 220 CONTINUE
  416. ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
  417. DO 240 J = N - 1, 1, -1
  418. CTEMP = C( J )
  419. STEMP = S( J )
  420. IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
  421. DO 230 I = 1, M
  422. TEMP = A( I, J )
  423. A( I, J ) = STEMP*A( I, N ) + CTEMP*TEMP
  424. A( I, N ) = CTEMP*A( I, N ) - STEMP*TEMP
  425. 230 CONTINUE
  426. END IF
  427. 240 CONTINUE
  428. END IF
  429. END IF
  430. END IF
  431. *
  432. RETURN
  433. *
  434. * End of SLASR
  435. *
  436. END