You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sgbequ.f 8.6 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324
  1. *> \brief \b SGBEQU
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SGBEQU + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgbequ.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgbequ.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgbequ.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE SGBEQU( M, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND,
  22. * AMAX, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * INTEGER INFO, KL, KU, LDAB, M, N
  26. * REAL AMAX, COLCND, ROWCND
  27. * ..
  28. * .. Array Arguments ..
  29. * REAL AB( LDAB, * ), C( * ), R( * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> SGBEQU computes row and column scalings intended to equilibrate an
  39. *> M-by-N band matrix A and reduce its condition number. R returns the
  40. *> row scale factors and C the column scale factors, chosen to try to
  41. *> make the largest element in each row and column of the matrix B with
  42. *> elements B(i,j)=R(i)*A(i,j)*C(j) have absolute value 1.
  43. *>
  44. *> R(i) and C(j) are restricted to be between SMLNUM = smallest safe
  45. *> number and BIGNUM = largest safe number. Use of these scaling
  46. *> factors is not guaranteed to reduce the condition number of A but
  47. *> works well in practice.
  48. *> \endverbatim
  49. *
  50. * Arguments:
  51. * ==========
  52. *
  53. *> \param[in] M
  54. *> \verbatim
  55. *> M is INTEGER
  56. *> The number of rows of the matrix A. M >= 0.
  57. *> \endverbatim
  58. *>
  59. *> \param[in] N
  60. *> \verbatim
  61. *> N is INTEGER
  62. *> The number of columns of the matrix A. N >= 0.
  63. *> \endverbatim
  64. *>
  65. *> \param[in] KL
  66. *> \verbatim
  67. *> KL is INTEGER
  68. *> The number of subdiagonals within the band of A. KL >= 0.
  69. *> \endverbatim
  70. *>
  71. *> \param[in] KU
  72. *> \verbatim
  73. *> KU is INTEGER
  74. *> The number of superdiagonals within the band of A. KU >= 0.
  75. *> \endverbatim
  76. *>
  77. *> \param[in] AB
  78. *> \verbatim
  79. *> AB is REAL array, dimension (LDAB,N)
  80. *> The band matrix A, stored in rows 1 to KL+KU+1. The j-th
  81. *> column of A is stored in the j-th column of the array AB as
  82. *> follows:
  83. *> AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl).
  84. *> \endverbatim
  85. *>
  86. *> \param[in] LDAB
  87. *> \verbatim
  88. *> LDAB is INTEGER
  89. *> The leading dimension of the array AB. LDAB >= KL+KU+1.
  90. *> \endverbatim
  91. *>
  92. *> \param[out] R
  93. *> \verbatim
  94. *> R is REAL array, dimension (M)
  95. *> If INFO = 0, or INFO > M, R contains the row scale factors
  96. *> for A.
  97. *> \endverbatim
  98. *>
  99. *> \param[out] C
  100. *> \verbatim
  101. *> C is REAL array, dimension (N)
  102. *> If INFO = 0, C contains the column scale factors for A.
  103. *> \endverbatim
  104. *>
  105. *> \param[out] ROWCND
  106. *> \verbatim
  107. *> ROWCND is REAL
  108. *> If INFO = 0 or INFO > M, ROWCND contains the ratio of the
  109. *> smallest R(i) to the largest R(i). If ROWCND >= 0.1 and
  110. *> AMAX is neither too large nor too small, it is not worth
  111. *> scaling by R.
  112. *> \endverbatim
  113. *>
  114. *> \param[out] COLCND
  115. *> \verbatim
  116. *> COLCND is REAL
  117. *> If INFO = 0, COLCND contains the ratio of the smallest
  118. *> C(i) to the largest C(i). If COLCND >= 0.1, it is not
  119. *> worth scaling by C.
  120. *> \endverbatim
  121. *>
  122. *> \param[out] AMAX
  123. *> \verbatim
  124. *> AMAX is REAL
  125. *> Absolute value of largest matrix element. If AMAX is very
  126. *> close to overflow or very close to underflow, the matrix
  127. *> should be scaled.
  128. *> \endverbatim
  129. *>
  130. *> \param[out] INFO
  131. *> \verbatim
  132. *> INFO is INTEGER
  133. *> = 0: successful exit
  134. *> < 0: if INFO = -i, the i-th argument had an illegal value
  135. *> > 0: if INFO = i, and i is
  136. *> <= M: the i-th row of A is exactly zero
  137. *> > M: the (i-M)-th column of A is exactly zero
  138. *> \endverbatim
  139. *
  140. * Authors:
  141. * ========
  142. *
  143. *> \author Univ. of Tennessee
  144. *> \author Univ. of California Berkeley
  145. *> \author Univ. of Colorado Denver
  146. *> \author NAG Ltd.
  147. *
  148. *> \date November 2011
  149. *
  150. *> \ingroup realGBcomputational
  151. *
  152. * =====================================================================
  153. SUBROUTINE SGBEQU( M, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND,
  154. $ AMAX, INFO )
  155. *
  156. * -- LAPACK computational routine (version 3.4.0) --
  157. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  158. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  159. * November 2011
  160. *
  161. * .. Scalar Arguments ..
  162. INTEGER INFO, KL, KU, LDAB, M, N
  163. REAL AMAX, COLCND, ROWCND
  164. * ..
  165. * .. Array Arguments ..
  166. REAL AB( LDAB, * ), C( * ), R( * )
  167. * ..
  168. *
  169. * =====================================================================
  170. *
  171. * .. Parameters ..
  172. REAL ONE, ZERO
  173. PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
  174. * ..
  175. * .. Local Scalars ..
  176. INTEGER I, J, KD
  177. REAL BIGNUM, RCMAX, RCMIN, SMLNUM
  178. * ..
  179. * .. External Functions ..
  180. REAL SLAMCH
  181. EXTERNAL SLAMCH
  182. * ..
  183. * .. External Subroutines ..
  184. EXTERNAL XERBLA
  185. * ..
  186. * .. Intrinsic Functions ..
  187. INTRINSIC ABS, MAX, MIN
  188. * ..
  189. * .. Executable Statements ..
  190. *
  191. * Test the input parameters
  192. *
  193. INFO = 0
  194. IF( M.LT.0 ) THEN
  195. INFO = -1
  196. ELSE IF( N.LT.0 ) THEN
  197. INFO = -2
  198. ELSE IF( KL.LT.0 ) THEN
  199. INFO = -3
  200. ELSE IF( KU.LT.0 ) THEN
  201. INFO = -4
  202. ELSE IF( LDAB.LT.KL+KU+1 ) THEN
  203. INFO = -6
  204. END IF
  205. IF( INFO.NE.0 ) THEN
  206. CALL XERBLA( 'SGBEQU', -INFO )
  207. RETURN
  208. END IF
  209. *
  210. * Quick return if possible
  211. *
  212. IF( M.EQ.0 .OR. N.EQ.0 ) THEN
  213. ROWCND = ONE
  214. COLCND = ONE
  215. AMAX = ZERO
  216. RETURN
  217. END IF
  218. *
  219. * Get machine constants.
  220. *
  221. SMLNUM = SLAMCH( 'S' )
  222. BIGNUM = ONE / SMLNUM
  223. *
  224. * Compute row scale factors.
  225. *
  226. DO 10 I = 1, M
  227. R( I ) = ZERO
  228. 10 CONTINUE
  229. *
  230. * Find the maximum element in each row.
  231. *
  232. KD = KU + 1
  233. DO 30 J = 1, N
  234. DO 20 I = MAX( J-KU, 1 ), MIN( J+KL, M )
  235. R( I ) = MAX( R( I ), ABS( AB( KD+I-J, J ) ) )
  236. 20 CONTINUE
  237. 30 CONTINUE
  238. *
  239. * Find the maximum and minimum scale factors.
  240. *
  241. RCMIN = BIGNUM
  242. RCMAX = ZERO
  243. DO 40 I = 1, M
  244. RCMAX = MAX( RCMAX, R( I ) )
  245. RCMIN = MIN( RCMIN, R( I ) )
  246. 40 CONTINUE
  247. AMAX = RCMAX
  248. *
  249. IF( RCMIN.EQ.ZERO ) THEN
  250. *
  251. * Find the first zero scale factor and return an error code.
  252. *
  253. DO 50 I = 1, M
  254. IF( R( I ).EQ.ZERO ) THEN
  255. INFO = I
  256. RETURN
  257. END IF
  258. 50 CONTINUE
  259. ELSE
  260. *
  261. * Invert the scale factors.
  262. *
  263. DO 60 I = 1, M
  264. R( I ) = ONE / MIN( MAX( R( I ), SMLNUM ), BIGNUM )
  265. 60 CONTINUE
  266. *
  267. * Compute ROWCND = min(R(I)) / max(R(I))
  268. *
  269. ROWCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
  270. END IF
  271. *
  272. * Compute column scale factors
  273. *
  274. DO 70 J = 1, N
  275. C( J ) = ZERO
  276. 70 CONTINUE
  277. *
  278. * Find the maximum element in each column,
  279. * assuming the row scaling computed above.
  280. *
  281. KD = KU + 1
  282. DO 90 J = 1, N
  283. DO 80 I = MAX( J-KU, 1 ), MIN( J+KL, M )
  284. C( J ) = MAX( C( J ), ABS( AB( KD+I-J, J ) )*R( I ) )
  285. 80 CONTINUE
  286. 90 CONTINUE
  287. *
  288. * Find the maximum and minimum scale factors.
  289. *
  290. RCMIN = BIGNUM
  291. RCMAX = ZERO
  292. DO 100 J = 1, N
  293. RCMIN = MIN( RCMIN, C( J ) )
  294. RCMAX = MAX( RCMAX, C( J ) )
  295. 100 CONTINUE
  296. *
  297. IF( RCMIN.EQ.ZERO ) THEN
  298. *
  299. * Find the first zero scale factor and return an error code.
  300. *
  301. DO 110 J = 1, N
  302. IF( C( J ).EQ.ZERO ) THEN
  303. INFO = M + J
  304. RETURN
  305. END IF
  306. 110 CONTINUE
  307. ELSE
  308. *
  309. * Invert the scale factors.
  310. *
  311. DO 120 J = 1, N
  312. C( J ) = ONE / MIN( MAX( C( J ), SMLNUM ), BIGNUM )
  313. 120 CONTINUE
  314. *
  315. * Compute COLCND = min(C(J)) / max(C(J))
  316. *
  317. COLCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
  318. END IF
  319. *
  320. RETURN
  321. *
  322. * End of SGBEQU
  323. *
  324. END