You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dtbrfs.f 15 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485
  1. *> \brief \b DTBRFS
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DTBRFS + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtbrfs.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtbrfs.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtbrfs.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DTBRFS( UPLO, TRANS, DIAG, N, KD, NRHS, AB, LDAB, B,
  22. * LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER DIAG, TRANS, UPLO
  26. * INTEGER INFO, KD, LDAB, LDB, LDX, N, NRHS
  27. * ..
  28. * .. Array Arguments ..
  29. * INTEGER IWORK( * )
  30. * DOUBLE PRECISION AB( LDAB, * ), B( LDB, * ), BERR( * ),
  31. * $ FERR( * ), WORK( * ), X( LDX, * )
  32. * ..
  33. *
  34. *
  35. *> \par Purpose:
  36. * =============
  37. *>
  38. *> \verbatim
  39. *>
  40. *> DTBRFS provides error bounds and backward error estimates for the
  41. *> solution to a system of linear equations with a triangular band
  42. *> coefficient matrix.
  43. *>
  44. *> The solution matrix X must be computed by DTBTRS or some other
  45. *> means before entering this routine. DTBRFS does not do iterative
  46. *> refinement because doing so cannot improve the backward error.
  47. *> \endverbatim
  48. *
  49. * Arguments:
  50. * ==========
  51. *
  52. *> \param[in] UPLO
  53. *> \verbatim
  54. *> UPLO is CHARACTER*1
  55. *> = 'U': A is upper triangular;
  56. *> = 'L': A is lower triangular.
  57. *> \endverbatim
  58. *>
  59. *> \param[in] TRANS
  60. *> \verbatim
  61. *> TRANS is CHARACTER*1
  62. *> Specifies the form of the system of equations:
  63. *> = 'N': A * X = B (No transpose)
  64. *> = 'T': A**T * X = B (Transpose)
  65. *> = 'C': A**H * X = B (Conjugate transpose = Transpose)
  66. *> \endverbatim
  67. *>
  68. *> \param[in] DIAG
  69. *> \verbatim
  70. *> DIAG is CHARACTER*1
  71. *> = 'N': A is non-unit triangular;
  72. *> = 'U': A is unit triangular.
  73. *> \endverbatim
  74. *>
  75. *> \param[in] N
  76. *> \verbatim
  77. *> N is INTEGER
  78. *> The order of the matrix A. N >= 0.
  79. *> \endverbatim
  80. *>
  81. *> \param[in] KD
  82. *> \verbatim
  83. *> KD is INTEGER
  84. *> The number of superdiagonals or subdiagonals of the
  85. *> triangular band matrix A. KD >= 0.
  86. *> \endverbatim
  87. *>
  88. *> \param[in] NRHS
  89. *> \verbatim
  90. *> NRHS is INTEGER
  91. *> The number of right hand sides, i.e., the number of columns
  92. *> of the matrices B and X. NRHS >= 0.
  93. *> \endverbatim
  94. *>
  95. *> \param[in] AB
  96. *> \verbatim
  97. *> AB is DOUBLE PRECISION array, dimension (LDAB,N)
  98. *> The upper or lower triangular band matrix A, stored in the
  99. *> first kd+1 rows of the array. The j-th column of A is stored
  100. *> in the j-th column of the array AB as follows:
  101. *> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
  102. *> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
  103. *> If DIAG = 'U', the diagonal elements of A are not referenced
  104. *> and are assumed to be 1.
  105. *> \endverbatim
  106. *>
  107. *> \param[in] LDAB
  108. *> \verbatim
  109. *> LDAB is INTEGER
  110. *> The leading dimension of the array AB. LDAB >= KD+1.
  111. *> \endverbatim
  112. *>
  113. *> \param[in] B
  114. *> \verbatim
  115. *> B is DOUBLE PRECISION array, dimension (LDB,NRHS)
  116. *> The right hand side matrix B.
  117. *> \endverbatim
  118. *>
  119. *> \param[in] LDB
  120. *> \verbatim
  121. *> LDB is INTEGER
  122. *> The leading dimension of the array B. LDB >= max(1,N).
  123. *> \endverbatim
  124. *>
  125. *> \param[in] X
  126. *> \verbatim
  127. *> X is DOUBLE PRECISION array, dimension (LDX,NRHS)
  128. *> The solution matrix X.
  129. *> \endverbatim
  130. *>
  131. *> \param[in] LDX
  132. *> \verbatim
  133. *> LDX is INTEGER
  134. *> The leading dimension of the array X. LDX >= max(1,N).
  135. *> \endverbatim
  136. *>
  137. *> \param[out] FERR
  138. *> \verbatim
  139. *> FERR is DOUBLE PRECISION array, dimension (NRHS)
  140. *> The estimated forward error bound for each solution vector
  141. *> X(j) (the j-th column of the solution matrix X).
  142. *> If XTRUE is the true solution corresponding to X(j), FERR(j)
  143. *> is an estimated upper bound for the magnitude of the largest
  144. *> element in (X(j) - XTRUE) divided by the magnitude of the
  145. *> largest element in X(j). The estimate is as reliable as
  146. *> the estimate for RCOND, and is almost always a slight
  147. *> overestimate of the true error.
  148. *> \endverbatim
  149. *>
  150. *> \param[out] BERR
  151. *> \verbatim
  152. *> BERR is DOUBLE PRECISION array, dimension (NRHS)
  153. *> The componentwise relative backward error of each solution
  154. *> vector X(j) (i.e., the smallest relative change in
  155. *> any element of A or B that makes X(j) an exact solution).
  156. *> \endverbatim
  157. *>
  158. *> \param[out] WORK
  159. *> \verbatim
  160. *> WORK is DOUBLE PRECISION array, dimension (3*N)
  161. *> \endverbatim
  162. *>
  163. *> \param[out] IWORK
  164. *> \verbatim
  165. *> IWORK is INTEGER array, dimension (N)
  166. *> \endverbatim
  167. *>
  168. *> \param[out] INFO
  169. *> \verbatim
  170. *> INFO is INTEGER
  171. *> = 0: successful exit
  172. *> < 0: if INFO = -i, the i-th argument had an illegal value
  173. *> \endverbatim
  174. *
  175. * Authors:
  176. * ========
  177. *
  178. *> \author Univ. of Tennessee
  179. *> \author Univ. of California Berkeley
  180. *> \author Univ. of Colorado Denver
  181. *> \author NAG Ltd.
  182. *
  183. *> \date November 2011
  184. *
  185. *> \ingroup doubleOTHERcomputational
  186. *
  187. * =====================================================================
  188. SUBROUTINE DTBRFS( UPLO, TRANS, DIAG, N, KD, NRHS, AB, LDAB, B,
  189. $ LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO )
  190. *
  191. * -- LAPACK computational routine (version 3.4.0) --
  192. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  193. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  194. * November 2011
  195. *
  196. * .. Scalar Arguments ..
  197. CHARACTER DIAG, TRANS, UPLO
  198. INTEGER INFO, KD, LDAB, LDB, LDX, N, NRHS
  199. * ..
  200. * .. Array Arguments ..
  201. INTEGER IWORK( * )
  202. DOUBLE PRECISION AB( LDAB, * ), B( LDB, * ), BERR( * ),
  203. $ FERR( * ), WORK( * ), X( LDX, * )
  204. * ..
  205. *
  206. * =====================================================================
  207. *
  208. * .. Parameters ..
  209. DOUBLE PRECISION ZERO
  210. PARAMETER ( ZERO = 0.0D+0 )
  211. DOUBLE PRECISION ONE
  212. PARAMETER ( ONE = 1.0D+0 )
  213. * ..
  214. * .. Local Scalars ..
  215. LOGICAL NOTRAN, NOUNIT, UPPER
  216. CHARACTER TRANST
  217. INTEGER I, J, K, KASE, NZ
  218. DOUBLE PRECISION EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
  219. * ..
  220. * .. Local Arrays ..
  221. INTEGER ISAVE( 3 )
  222. * ..
  223. * .. External Subroutines ..
  224. EXTERNAL DAXPY, DCOPY, DLACN2, DTBMV, DTBSV, XERBLA
  225. * ..
  226. * .. Intrinsic Functions ..
  227. INTRINSIC ABS, MAX, MIN
  228. * ..
  229. * .. External Functions ..
  230. LOGICAL LSAME
  231. DOUBLE PRECISION DLAMCH
  232. EXTERNAL LSAME, DLAMCH
  233. * ..
  234. * .. Executable Statements ..
  235. *
  236. * Test the input parameters.
  237. *
  238. INFO = 0
  239. UPPER = LSAME( UPLO, 'U' )
  240. NOTRAN = LSAME( TRANS, 'N' )
  241. NOUNIT = LSAME( DIAG, 'N' )
  242. *
  243. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  244. INFO = -1
  245. ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
  246. $ LSAME( TRANS, 'C' ) ) THEN
  247. INFO = -2
  248. ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
  249. INFO = -3
  250. ELSE IF( N.LT.0 ) THEN
  251. INFO = -4
  252. ELSE IF( KD.LT.0 ) THEN
  253. INFO = -5
  254. ELSE IF( NRHS.LT.0 ) THEN
  255. INFO = -6
  256. ELSE IF( LDAB.LT.KD+1 ) THEN
  257. INFO = -8
  258. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  259. INFO = -10
  260. ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  261. INFO = -12
  262. END IF
  263. IF( INFO.NE.0 ) THEN
  264. CALL XERBLA( 'DTBRFS', -INFO )
  265. RETURN
  266. END IF
  267. *
  268. * Quick return if possible
  269. *
  270. IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
  271. DO 10 J = 1, NRHS
  272. FERR( J ) = ZERO
  273. BERR( J ) = ZERO
  274. 10 CONTINUE
  275. RETURN
  276. END IF
  277. *
  278. IF( NOTRAN ) THEN
  279. TRANST = 'T'
  280. ELSE
  281. TRANST = 'N'
  282. END IF
  283. *
  284. * NZ = maximum number of nonzero elements in each row of A, plus 1
  285. *
  286. NZ = KD + 2
  287. EPS = DLAMCH( 'Epsilon' )
  288. SAFMIN = DLAMCH( 'Safe minimum' )
  289. SAFE1 = NZ*SAFMIN
  290. SAFE2 = SAFE1 / EPS
  291. *
  292. * Do for each right hand side
  293. *
  294. DO 250 J = 1, NRHS
  295. *
  296. * Compute residual R = B - op(A) * X,
  297. * where op(A) = A or A**T, depending on TRANS.
  298. *
  299. CALL DCOPY( N, X( 1, J ), 1, WORK( N+1 ), 1 )
  300. CALL DTBMV( UPLO, TRANS, DIAG, N, KD, AB, LDAB, WORK( N+1 ),
  301. $ 1 )
  302. CALL DAXPY( N, -ONE, B( 1, J ), 1, WORK( N+1 ), 1 )
  303. *
  304. * Compute componentwise relative backward error from formula
  305. *
  306. * max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) )
  307. *
  308. * where abs(Z) is the componentwise absolute value of the matrix
  309. * or vector Z. If the i-th component of the denominator is less
  310. * than SAFE2, then SAFE1 is added to the i-th components of the
  311. * numerator and denominator before dividing.
  312. *
  313. DO 20 I = 1, N
  314. WORK( I ) = ABS( B( I, J ) )
  315. 20 CONTINUE
  316. *
  317. IF( NOTRAN ) THEN
  318. *
  319. * Compute abs(A)*abs(X) + abs(B).
  320. *
  321. IF( UPPER ) THEN
  322. IF( NOUNIT ) THEN
  323. DO 40 K = 1, N
  324. XK = ABS( X( K, J ) )
  325. DO 30 I = MAX( 1, K-KD ), K
  326. WORK( I ) = WORK( I ) +
  327. $ ABS( AB( KD+1+I-K, K ) )*XK
  328. 30 CONTINUE
  329. 40 CONTINUE
  330. ELSE
  331. DO 60 K = 1, N
  332. XK = ABS( X( K, J ) )
  333. DO 50 I = MAX( 1, K-KD ), K - 1
  334. WORK( I ) = WORK( I ) +
  335. $ ABS( AB( KD+1+I-K, K ) )*XK
  336. 50 CONTINUE
  337. WORK( K ) = WORK( K ) + XK
  338. 60 CONTINUE
  339. END IF
  340. ELSE
  341. IF( NOUNIT ) THEN
  342. DO 80 K = 1, N
  343. XK = ABS( X( K, J ) )
  344. DO 70 I = K, MIN( N, K+KD )
  345. WORK( I ) = WORK( I ) + ABS( AB( 1+I-K, K ) )*XK
  346. 70 CONTINUE
  347. 80 CONTINUE
  348. ELSE
  349. DO 100 K = 1, N
  350. XK = ABS( X( K, J ) )
  351. DO 90 I = K + 1, MIN( N, K+KD )
  352. WORK( I ) = WORK( I ) + ABS( AB( 1+I-K, K ) )*XK
  353. 90 CONTINUE
  354. WORK( K ) = WORK( K ) + XK
  355. 100 CONTINUE
  356. END IF
  357. END IF
  358. ELSE
  359. *
  360. * Compute abs(A**T)*abs(X) + abs(B).
  361. *
  362. IF( UPPER ) THEN
  363. IF( NOUNIT ) THEN
  364. DO 120 K = 1, N
  365. S = ZERO
  366. DO 110 I = MAX( 1, K-KD ), K
  367. S = S + ABS( AB( KD+1+I-K, K ) )*
  368. $ ABS( X( I, J ) )
  369. 110 CONTINUE
  370. WORK( K ) = WORK( K ) + S
  371. 120 CONTINUE
  372. ELSE
  373. DO 140 K = 1, N
  374. S = ABS( X( K, J ) )
  375. DO 130 I = MAX( 1, K-KD ), K - 1
  376. S = S + ABS( AB( KD+1+I-K, K ) )*
  377. $ ABS( X( I, J ) )
  378. 130 CONTINUE
  379. WORK( K ) = WORK( K ) + S
  380. 140 CONTINUE
  381. END IF
  382. ELSE
  383. IF( NOUNIT ) THEN
  384. DO 160 K = 1, N
  385. S = ZERO
  386. DO 150 I = K, MIN( N, K+KD )
  387. S = S + ABS( AB( 1+I-K, K ) )*ABS( X( I, J ) )
  388. 150 CONTINUE
  389. WORK( K ) = WORK( K ) + S
  390. 160 CONTINUE
  391. ELSE
  392. DO 180 K = 1, N
  393. S = ABS( X( K, J ) )
  394. DO 170 I = K + 1, MIN( N, K+KD )
  395. S = S + ABS( AB( 1+I-K, K ) )*ABS( X( I, J ) )
  396. 170 CONTINUE
  397. WORK( K ) = WORK( K ) + S
  398. 180 CONTINUE
  399. END IF
  400. END IF
  401. END IF
  402. S = ZERO
  403. DO 190 I = 1, N
  404. IF( WORK( I ).GT.SAFE2 ) THEN
  405. S = MAX( S, ABS( WORK( N+I ) ) / WORK( I ) )
  406. ELSE
  407. S = MAX( S, ( ABS( WORK( N+I ) )+SAFE1 ) /
  408. $ ( WORK( I )+SAFE1 ) )
  409. END IF
  410. 190 CONTINUE
  411. BERR( J ) = S
  412. *
  413. * Bound error from formula
  414. *
  415. * norm(X - XTRUE) / norm(X) .le. FERR =
  416. * norm( abs(inv(op(A)))*
  417. * ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X)
  418. *
  419. * where
  420. * norm(Z) is the magnitude of the largest component of Z
  421. * inv(op(A)) is the inverse of op(A)
  422. * abs(Z) is the componentwise absolute value of the matrix or
  423. * vector Z
  424. * NZ is the maximum number of nonzeros in any row of A, plus 1
  425. * EPS is machine epsilon
  426. *
  427. * The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B))
  428. * is incremented by SAFE1 if the i-th component of
  429. * abs(op(A))*abs(X) + abs(B) is less than SAFE2.
  430. *
  431. * Use DLACN2 to estimate the infinity-norm of the matrix
  432. * inv(op(A)) * diag(W),
  433. * where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) )))
  434. *
  435. DO 200 I = 1, N
  436. IF( WORK( I ).GT.SAFE2 ) THEN
  437. WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I )
  438. ELSE
  439. WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I ) + SAFE1
  440. END IF
  441. 200 CONTINUE
  442. *
  443. KASE = 0
  444. 210 CONTINUE
  445. CALL DLACN2( N, WORK( 2*N+1 ), WORK( N+1 ), IWORK, FERR( J ),
  446. $ KASE, ISAVE )
  447. IF( KASE.NE.0 ) THEN
  448. IF( KASE.EQ.1 ) THEN
  449. *
  450. * Multiply by diag(W)*inv(op(A)**T).
  451. *
  452. CALL DTBSV( UPLO, TRANST, DIAG, N, KD, AB, LDAB,
  453. $ WORK( N+1 ), 1 )
  454. DO 220 I = 1, N
  455. WORK( N+I ) = WORK( I )*WORK( N+I )
  456. 220 CONTINUE
  457. ELSE
  458. *
  459. * Multiply by inv(op(A))*diag(W).
  460. *
  461. DO 230 I = 1, N
  462. WORK( N+I ) = WORK( I )*WORK( N+I )
  463. 230 CONTINUE
  464. CALL DTBSV( UPLO, TRANS, DIAG, N, KD, AB, LDAB,
  465. $ WORK( N+1 ), 1 )
  466. END IF
  467. GO TO 210
  468. END IF
  469. *
  470. * Normalize error.
  471. *
  472. LSTRES = ZERO
  473. DO 240 I = 1, N
  474. LSTRES = MAX( LSTRES, ABS( X( I, J ) ) )
  475. 240 CONTINUE
  476. IF( LSTRES.NE.ZERO )
  477. $ FERR( J ) = FERR( J ) / LSTRES
  478. *
  479. 250 CONTINUE
  480. *
  481. RETURN
  482. *
  483. * End of DTBRFS
  484. *
  485. END