You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dsbtrd.f 21 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641
  1. *> \brief \b DSBTRD
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DSBTRD + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsbtrd.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsbtrd.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsbtrd.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DSBTRD( VECT, UPLO, N, KD, AB, LDAB, D, E, Q, LDQ,
  22. * WORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER UPLO, VECT
  26. * INTEGER INFO, KD, LDAB, LDQ, N
  27. * ..
  28. * .. Array Arguments ..
  29. * DOUBLE PRECISION AB( LDAB, * ), D( * ), E( * ), Q( LDQ, * ),
  30. * $ WORK( * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> DSBTRD reduces a real symmetric band matrix A to symmetric
  40. *> tridiagonal form T by an orthogonal similarity transformation:
  41. *> Q**T * A * Q = T.
  42. *> \endverbatim
  43. *
  44. * Arguments:
  45. * ==========
  46. *
  47. *> \param[in] VECT
  48. *> \verbatim
  49. *> VECT is CHARACTER*1
  50. *> = 'N': do not form Q;
  51. *> = 'V': form Q;
  52. *> = 'U': update a matrix X, by forming X*Q.
  53. *> \endverbatim
  54. *>
  55. *> \param[in] UPLO
  56. *> \verbatim
  57. *> UPLO is CHARACTER*1
  58. *> = 'U': Upper triangle of A is stored;
  59. *> = 'L': Lower triangle of A is stored.
  60. *> \endverbatim
  61. *>
  62. *> \param[in] N
  63. *> \verbatim
  64. *> N is INTEGER
  65. *> The order of the matrix A. N >= 0.
  66. *> \endverbatim
  67. *>
  68. *> \param[in] KD
  69. *> \verbatim
  70. *> KD is INTEGER
  71. *> The number of superdiagonals of the matrix A if UPLO = 'U',
  72. *> or the number of subdiagonals if UPLO = 'L'. KD >= 0.
  73. *> \endverbatim
  74. *>
  75. *> \param[in,out] AB
  76. *> \verbatim
  77. *> AB is DOUBLE PRECISION array, dimension (LDAB,N)
  78. *> On entry, the upper or lower triangle of the symmetric band
  79. *> matrix A, stored in the first KD+1 rows of the array. The
  80. *> j-th column of A is stored in the j-th column of the array AB
  81. *> as follows:
  82. *> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
  83. *> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
  84. *> On exit, the diagonal elements of AB are overwritten by the
  85. *> diagonal elements of the tridiagonal matrix T; if KD > 0, the
  86. *> elements on the first superdiagonal (if UPLO = 'U') or the
  87. *> first subdiagonal (if UPLO = 'L') are overwritten by the
  88. *> off-diagonal elements of T; the rest of AB is overwritten by
  89. *> values generated during the reduction.
  90. *> \endverbatim
  91. *>
  92. *> \param[in] LDAB
  93. *> \verbatim
  94. *> LDAB is INTEGER
  95. *> The leading dimension of the array AB. LDAB >= KD+1.
  96. *> \endverbatim
  97. *>
  98. *> \param[out] D
  99. *> \verbatim
  100. *> D is DOUBLE PRECISION array, dimension (N)
  101. *> The diagonal elements of the tridiagonal matrix T.
  102. *> \endverbatim
  103. *>
  104. *> \param[out] E
  105. *> \verbatim
  106. *> E is DOUBLE PRECISION array, dimension (N-1)
  107. *> The off-diagonal elements of the tridiagonal matrix T:
  108. *> E(i) = T(i,i+1) if UPLO = 'U'; E(i) = T(i+1,i) if UPLO = 'L'.
  109. *> \endverbatim
  110. *>
  111. *> \param[in,out] Q
  112. *> \verbatim
  113. *> Q is DOUBLE PRECISION array, dimension (LDQ,N)
  114. *> On entry, if VECT = 'U', then Q must contain an N-by-N
  115. *> matrix X; if VECT = 'N' or 'V', then Q need not be set.
  116. *>
  117. *> On exit:
  118. *> if VECT = 'V', Q contains the N-by-N orthogonal matrix Q;
  119. *> if VECT = 'U', Q contains the product X*Q;
  120. *> if VECT = 'N', the array Q is not referenced.
  121. *> \endverbatim
  122. *>
  123. *> \param[in] LDQ
  124. *> \verbatim
  125. *> LDQ is INTEGER
  126. *> The leading dimension of the array Q.
  127. *> LDQ >= 1, and LDQ >= N if VECT = 'V' or 'U'.
  128. *> \endverbatim
  129. *>
  130. *> \param[out] WORK
  131. *> \verbatim
  132. *> WORK is DOUBLE PRECISION array, dimension (N)
  133. *> \endverbatim
  134. *>
  135. *> \param[out] INFO
  136. *> \verbatim
  137. *> INFO is INTEGER
  138. *> = 0: successful exit
  139. *> < 0: if INFO = -i, the i-th argument had an illegal value
  140. *> \endverbatim
  141. *
  142. * Authors:
  143. * ========
  144. *
  145. *> \author Univ. of Tennessee
  146. *> \author Univ. of California Berkeley
  147. *> \author Univ. of Colorado Denver
  148. *> \author NAG Ltd.
  149. *
  150. *> \date November 2011
  151. *
  152. *> \ingroup doubleOTHERcomputational
  153. *
  154. *> \par Further Details:
  155. * =====================
  156. *>
  157. *> \verbatim
  158. *>
  159. *> Modified by Linda Kaufman, Bell Labs.
  160. *> \endverbatim
  161. *>
  162. * =====================================================================
  163. SUBROUTINE DSBTRD( VECT, UPLO, N, KD, AB, LDAB, D, E, Q, LDQ,
  164. $ WORK, INFO )
  165. *
  166. * -- LAPACK computational routine (version 3.4.0) --
  167. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  168. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  169. * November 2011
  170. *
  171. * .. Scalar Arguments ..
  172. CHARACTER UPLO, VECT
  173. INTEGER INFO, KD, LDAB, LDQ, N
  174. * ..
  175. * .. Array Arguments ..
  176. DOUBLE PRECISION AB( LDAB, * ), D( * ), E( * ), Q( LDQ, * ),
  177. $ WORK( * )
  178. * ..
  179. *
  180. * =====================================================================
  181. *
  182. * .. Parameters ..
  183. DOUBLE PRECISION ZERO, ONE
  184. PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  185. * ..
  186. * .. Local Scalars ..
  187. LOGICAL INITQ, UPPER, WANTQ
  188. INTEGER I, I2, IBL, INCA, INCX, IQAEND, IQB, IQEND, J,
  189. $ J1, J1END, J1INC, J2, JEND, JIN, JINC, K, KD1,
  190. $ KDM1, KDN, L, LAST, LEND, NQ, NR, NRT
  191. DOUBLE PRECISION TEMP
  192. * ..
  193. * .. External Subroutines ..
  194. EXTERNAL DLAR2V, DLARGV, DLARTG, DLARTV, DLASET, DROT,
  195. $ XERBLA
  196. * ..
  197. * .. Intrinsic Functions ..
  198. INTRINSIC MAX, MIN
  199. * ..
  200. * .. External Functions ..
  201. LOGICAL LSAME
  202. EXTERNAL LSAME
  203. * ..
  204. * .. Executable Statements ..
  205. *
  206. * Test the input parameters
  207. *
  208. INITQ = LSAME( VECT, 'V' )
  209. WANTQ = INITQ .OR. LSAME( VECT, 'U' )
  210. UPPER = LSAME( UPLO, 'U' )
  211. KD1 = KD + 1
  212. KDM1 = KD - 1
  213. INCX = LDAB - 1
  214. IQEND = 1
  215. *
  216. INFO = 0
  217. IF( .NOT.WANTQ .AND. .NOT.LSAME( VECT, 'N' ) ) THEN
  218. INFO = -1
  219. ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  220. INFO = -2
  221. ELSE IF( N.LT.0 ) THEN
  222. INFO = -3
  223. ELSE IF( KD.LT.0 ) THEN
  224. INFO = -4
  225. ELSE IF( LDAB.LT.KD1 ) THEN
  226. INFO = -6
  227. ELSE IF( LDQ.LT.MAX( 1, N ) .AND. WANTQ ) THEN
  228. INFO = -10
  229. END IF
  230. IF( INFO.NE.0 ) THEN
  231. CALL XERBLA( 'DSBTRD', -INFO )
  232. RETURN
  233. END IF
  234. *
  235. * Quick return if possible
  236. *
  237. IF( N.EQ.0 )
  238. $ RETURN
  239. *
  240. * Initialize Q to the unit matrix, if needed
  241. *
  242. IF( INITQ )
  243. $ CALL DLASET( 'Full', N, N, ZERO, ONE, Q, LDQ )
  244. *
  245. * Wherever possible, plane rotations are generated and applied in
  246. * vector operations of length NR over the index set J1:J2:KD1.
  247. *
  248. * The cosines and sines of the plane rotations are stored in the
  249. * arrays D and WORK.
  250. *
  251. INCA = KD1*LDAB
  252. KDN = MIN( N-1, KD )
  253. IF( UPPER ) THEN
  254. *
  255. IF( KD.GT.1 ) THEN
  256. *
  257. * Reduce to tridiagonal form, working with upper triangle
  258. *
  259. NR = 0
  260. J1 = KDN + 2
  261. J2 = 1
  262. *
  263. DO 90 I = 1, N - 2
  264. *
  265. * Reduce i-th row of matrix to tridiagonal form
  266. *
  267. DO 80 K = KDN + 1, 2, -1
  268. J1 = J1 + KDN
  269. J2 = J2 + KDN
  270. *
  271. IF( NR.GT.0 ) THEN
  272. *
  273. * generate plane rotations to annihilate nonzero
  274. * elements which have been created outside the band
  275. *
  276. CALL DLARGV( NR, AB( 1, J1-1 ), INCA, WORK( J1 ),
  277. $ KD1, D( J1 ), KD1 )
  278. *
  279. * apply rotations from the right
  280. *
  281. *
  282. * Dependent on the the number of diagonals either
  283. * DLARTV or DROT is used
  284. *
  285. IF( NR.GE.2*KD-1 ) THEN
  286. DO 10 L = 1, KD - 1
  287. CALL DLARTV( NR, AB( L+1, J1-1 ), INCA,
  288. $ AB( L, J1 ), INCA, D( J1 ),
  289. $ WORK( J1 ), KD1 )
  290. 10 CONTINUE
  291. *
  292. ELSE
  293. JEND = J1 + ( NR-1 )*KD1
  294. DO 20 JINC = J1, JEND, KD1
  295. CALL DROT( KDM1, AB( 2, JINC-1 ), 1,
  296. $ AB( 1, JINC ), 1, D( JINC ),
  297. $ WORK( JINC ) )
  298. 20 CONTINUE
  299. END IF
  300. END IF
  301. *
  302. *
  303. IF( K.GT.2 ) THEN
  304. IF( K.LE.N-I+1 ) THEN
  305. *
  306. * generate plane rotation to annihilate a(i,i+k-1)
  307. * within the band
  308. *
  309. CALL DLARTG( AB( KD-K+3, I+K-2 ),
  310. $ AB( KD-K+2, I+K-1 ), D( I+K-1 ),
  311. $ WORK( I+K-1 ), TEMP )
  312. AB( KD-K+3, I+K-2 ) = TEMP
  313. *
  314. * apply rotation from the right
  315. *
  316. CALL DROT( K-3, AB( KD-K+4, I+K-2 ), 1,
  317. $ AB( KD-K+3, I+K-1 ), 1, D( I+K-1 ),
  318. $ WORK( I+K-1 ) )
  319. END IF
  320. NR = NR + 1
  321. J1 = J1 - KDN - 1
  322. END IF
  323. *
  324. * apply plane rotations from both sides to diagonal
  325. * blocks
  326. *
  327. IF( NR.GT.0 )
  328. $ CALL DLAR2V( NR, AB( KD1, J1-1 ), AB( KD1, J1 ),
  329. $ AB( KD, J1 ), INCA, D( J1 ),
  330. $ WORK( J1 ), KD1 )
  331. *
  332. * apply plane rotations from the left
  333. *
  334. IF( NR.GT.0 ) THEN
  335. IF( 2*KD-1.LT.NR ) THEN
  336. *
  337. * Dependent on the the number of diagonals either
  338. * DLARTV or DROT is used
  339. *
  340. DO 30 L = 1, KD - 1
  341. IF( J2+L.GT.N ) THEN
  342. NRT = NR - 1
  343. ELSE
  344. NRT = NR
  345. END IF
  346. IF( NRT.GT.0 )
  347. $ CALL DLARTV( NRT, AB( KD-L, J1+L ), INCA,
  348. $ AB( KD-L+1, J1+L ), INCA,
  349. $ D( J1 ), WORK( J1 ), KD1 )
  350. 30 CONTINUE
  351. ELSE
  352. J1END = J1 + KD1*( NR-2 )
  353. IF( J1END.GE.J1 ) THEN
  354. DO 40 JIN = J1, J1END, KD1
  355. CALL DROT( KD-1, AB( KD-1, JIN+1 ), INCX,
  356. $ AB( KD, JIN+1 ), INCX,
  357. $ D( JIN ), WORK( JIN ) )
  358. 40 CONTINUE
  359. END IF
  360. LEND = MIN( KDM1, N-J2 )
  361. LAST = J1END + KD1
  362. IF( LEND.GT.0 )
  363. $ CALL DROT( LEND, AB( KD-1, LAST+1 ), INCX,
  364. $ AB( KD, LAST+1 ), INCX, D( LAST ),
  365. $ WORK( LAST ) )
  366. END IF
  367. END IF
  368. *
  369. IF( WANTQ ) THEN
  370. *
  371. * accumulate product of plane rotations in Q
  372. *
  373. IF( INITQ ) THEN
  374. *
  375. * take advantage of the fact that Q was
  376. * initially the Identity matrix
  377. *
  378. IQEND = MAX( IQEND, J2 )
  379. I2 = MAX( 0, K-3 )
  380. IQAEND = 1 + I*KD
  381. IF( K.EQ.2 )
  382. $ IQAEND = IQAEND + KD
  383. IQAEND = MIN( IQAEND, IQEND )
  384. DO 50 J = J1, J2, KD1
  385. IBL = I - I2 / KDM1
  386. I2 = I2 + 1
  387. IQB = MAX( 1, J-IBL )
  388. NQ = 1 + IQAEND - IQB
  389. IQAEND = MIN( IQAEND+KD, IQEND )
  390. CALL DROT( NQ, Q( IQB, J-1 ), 1, Q( IQB, J ),
  391. $ 1, D( J ), WORK( J ) )
  392. 50 CONTINUE
  393. ELSE
  394. *
  395. DO 60 J = J1, J2, KD1
  396. CALL DROT( N, Q( 1, J-1 ), 1, Q( 1, J ), 1,
  397. $ D( J ), WORK( J ) )
  398. 60 CONTINUE
  399. END IF
  400. *
  401. END IF
  402. *
  403. IF( J2+KDN.GT.N ) THEN
  404. *
  405. * adjust J2 to keep within the bounds of the matrix
  406. *
  407. NR = NR - 1
  408. J2 = J2 - KDN - 1
  409. END IF
  410. *
  411. DO 70 J = J1, J2, KD1
  412. *
  413. * create nonzero element a(j-1,j+kd) outside the band
  414. * and store it in WORK
  415. *
  416. WORK( J+KD ) = WORK( J )*AB( 1, J+KD )
  417. AB( 1, J+KD ) = D( J )*AB( 1, J+KD )
  418. 70 CONTINUE
  419. 80 CONTINUE
  420. 90 CONTINUE
  421. END IF
  422. *
  423. IF( KD.GT.0 ) THEN
  424. *
  425. * copy off-diagonal elements to E
  426. *
  427. DO 100 I = 1, N - 1
  428. E( I ) = AB( KD, I+1 )
  429. 100 CONTINUE
  430. ELSE
  431. *
  432. * set E to zero if original matrix was diagonal
  433. *
  434. DO 110 I = 1, N - 1
  435. E( I ) = ZERO
  436. 110 CONTINUE
  437. END IF
  438. *
  439. * copy diagonal elements to D
  440. *
  441. DO 120 I = 1, N
  442. D( I ) = AB( KD1, I )
  443. 120 CONTINUE
  444. *
  445. ELSE
  446. *
  447. IF( KD.GT.1 ) THEN
  448. *
  449. * Reduce to tridiagonal form, working with lower triangle
  450. *
  451. NR = 0
  452. J1 = KDN + 2
  453. J2 = 1
  454. *
  455. DO 210 I = 1, N - 2
  456. *
  457. * Reduce i-th column of matrix to tridiagonal form
  458. *
  459. DO 200 K = KDN + 1, 2, -1
  460. J1 = J1 + KDN
  461. J2 = J2 + KDN
  462. *
  463. IF( NR.GT.0 ) THEN
  464. *
  465. * generate plane rotations to annihilate nonzero
  466. * elements which have been created outside the band
  467. *
  468. CALL DLARGV( NR, AB( KD1, J1-KD1 ), INCA,
  469. $ WORK( J1 ), KD1, D( J1 ), KD1 )
  470. *
  471. * apply plane rotations from one side
  472. *
  473. *
  474. * Dependent on the the number of diagonals either
  475. * DLARTV or DROT is used
  476. *
  477. IF( NR.GT.2*KD-1 ) THEN
  478. DO 130 L = 1, KD - 1
  479. CALL DLARTV( NR, AB( KD1-L, J1-KD1+L ), INCA,
  480. $ AB( KD1-L+1, J1-KD1+L ), INCA,
  481. $ D( J1 ), WORK( J1 ), KD1 )
  482. 130 CONTINUE
  483. ELSE
  484. JEND = J1 + KD1*( NR-1 )
  485. DO 140 JINC = J1, JEND, KD1
  486. CALL DROT( KDM1, AB( KD, JINC-KD ), INCX,
  487. $ AB( KD1, JINC-KD ), INCX,
  488. $ D( JINC ), WORK( JINC ) )
  489. 140 CONTINUE
  490. END IF
  491. *
  492. END IF
  493. *
  494. IF( K.GT.2 ) THEN
  495. IF( K.LE.N-I+1 ) THEN
  496. *
  497. * generate plane rotation to annihilate a(i+k-1,i)
  498. * within the band
  499. *
  500. CALL DLARTG( AB( K-1, I ), AB( K, I ),
  501. $ D( I+K-1 ), WORK( I+K-1 ), TEMP )
  502. AB( K-1, I ) = TEMP
  503. *
  504. * apply rotation from the left
  505. *
  506. CALL DROT( K-3, AB( K-2, I+1 ), LDAB-1,
  507. $ AB( K-1, I+1 ), LDAB-1, D( I+K-1 ),
  508. $ WORK( I+K-1 ) )
  509. END IF
  510. NR = NR + 1
  511. J1 = J1 - KDN - 1
  512. END IF
  513. *
  514. * apply plane rotations from both sides to diagonal
  515. * blocks
  516. *
  517. IF( NR.GT.0 )
  518. $ CALL DLAR2V( NR, AB( 1, J1-1 ), AB( 1, J1 ),
  519. $ AB( 2, J1-1 ), INCA, D( J1 ),
  520. $ WORK( J1 ), KD1 )
  521. *
  522. * apply plane rotations from the right
  523. *
  524. *
  525. * Dependent on the the number of diagonals either
  526. * DLARTV or DROT is used
  527. *
  528. IF( NR.GT.0 ) THEN
  529. IF( NR.GT.2*KD-1 ) THEN
  530. DO 150 L = 1, KD - 1
  531. IF( J2+L.GT.N ) THEN
  532. NRT = NR - 1
  533. ELSE
  534. NRT = NR
  535. END IF
  536. IF( NRT.GT.0 )
  537. $ CALL DLARTV( NRT, AB( L+2, J1-1 ), INCA,
  538. $ AB( L+1, J1 ), INCA, D( J1 ),
  539. $ WORK( J1 ), KD1 )
  540. 150 CONTINUE
  541. ELSE
  542. J1END = J1 + KD1*( NR-2 )
  543. IF( J1END.GE.J1 ) THEN
  544. DO 160 J1INC = J1, J1END, KD1
  545. CALL DROT( KDM1, AB( 3, J1INC-1 ), 1,
  546. $ AB( 2, J1INC ), 1, D( J1INC ),
  547. $ WORK( J1INC ) )
  548. 160 CONTINUE
  549. END IF
  550. LEND = MIN( KDM1, N-J2 )
  551. LAST = J1END + KD1
  552. IF( LEND.GT.0 )
  553. $ CALL DROT( LEND, AB( 3, LAST-1 ), 1,
  554. $ AB( 2, LAST ), 1, D( LAST ),
  555. $ WORK( LAST ) )
  556. END IF
  557. END IF
  558. *
  559. *
  560. *
  561. IF( WANTQ ) THEN
  562. *
  563. * accumulate product of plane rotations in Q
  564. *
  565. IF( INITQ ) THEN
  566. *
  567. * take advantage of the fact that Q was
  568. * initially the Identity matrix
  569. *
  570. IQEND = MAX( IQEND, J2 )
  571. I2 = MAX( 0, K-3 )
  572. IQAEND = 1 + I*KD
  573. IF( K.EQ.2 )
  574. $ IQAEND = IQAEND + KD
  575. IQAEND = MIN( IQAEND, IQEND )
  576. DO 170 J = J1, J2, KD1
  577. IBL = I - I2 / KDM1
  578. I2 = I2 + 1
  579. IQB = MAX( 1, J-IBL )
  580. NQ = 1 + IQAEND - IQB
  581. IQAEND = MIN( IQAEND+KD, IQEND )
  582. CALL DROT( NQ, Q( IQB, J-1 ), 1, Q( IQB, J ),
  583. $ 1, D( J ), WORK( J ) )
  584. 170 CONTINUE
  585. ELSE
  586. *
  587. DO 180 J = J1, J2, KD1
  588. CALL DROT( N, Q( 1, J-1 ), 1, Q( 1, J ), 1,
  589. $ D( J ), WORK( J ) )
  590. 180 CONTINUE
  591. END IF
  592. END IF
  593. *
  594. IF( J2+KDN.GT.N ) THEN
  595. *
  596. * adjust J2 to keep within the bounds of the matrix
  597. *
  598. NR = NR - 1
  599. J2 = J2 - KDN - 1
  600. END IF
  601. *
  602. DO 190 J = J1, J2, KD1
  603. *
  604. * create nonzero element a(j+kd,j-1) outside the
  605. * band and store it in WORK
  606. *
  607. WORK( J+KD ) = WORK( J )*AB( KD1, J )
  608. AB( KD1, J ) = D( J )*AB( KD1, J )
  609. 190 CONTINUE
  610. 200 CONTINUE
  611. 210 CONTINUE
  612. END IF
  613. *
  614. IF( KD.GT.0 ) THEN
  615. *
  616. * copy off-diagonal elements to E
  617. *
  618. DO 220 I = 1, N - 1
  619. E( I ) = AB( 2, I )
  620. 220 CONTINUE
  621. ELSE
  622. *
  623. * set E to zero if original matrix was diagonal
  624. *
  625. DO 230 I = 1, N - 1
  626. E( I ) = ZERO
  627. 230 CONTINUE
  628. END IF
  629. *
  630. * copy diagonal elements to D
  631. *
  632. DO 240 I = 1, N
  633. D( I ) = AB( 1, I )
  634. 240 CONTINUE
  635. END IF
  636. *
  637. RETURN
  638. *
  639. * End of DSBTRD
  640. *
  641. END