You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

clatps.f 31 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978
  1. *> \brief \b CLATPS solves a triangular system of equations with the matrix held in packed storage.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CLATPS + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clatps.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clatps.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clatps.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CLATPS( UPLO, TRANS, DIAG, NORMIN, N, AP, X, SCALE,
  22. * CNORM, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER DIAG, NORMIN, TRANS, UPLO
  26. * INTEGER INFO, N
  27. * REAL SCALE
  28. * ..
  29. * .. Array Arguments ..
  30. * REAL CNORM( * )
  31. * COMPLEX AP( * ), X( * )
  32. * ..
  33. *
  34. *
  35. *> \par Purpose:
  36. * =============
  37. *>
  38. *> \verbatim
  39. *>
  40. *> CLATPS solves one of the triangular systems
  41. *>
  42. *> A * x = s*b, A**T * x = s*b, or A**H * x = s*b,
  43. *>
  44. *> with scaling to prevent overflow, where A is an upper or lower
  45. *> triangular matrix stored in packed form. Here A**T denotes the
  46. *> transpose of A, A**H denotes the conjugate transpose of A, x and b
  47. *> are n-element vectors, and s is a scaling factor, usually less than
  48. *> or equal to 1, chosen so that the components of x will be less than
  49. *> the overflow threshold. If the unscaled problem will not cause
  50. *> overflow, the Level 2 BLAS routine CTPSV is called. If the matrix A
  51. *> is singular (A(j,j) = 0 for some j), then s is set to 0 and a
  52. *> non-trivial solution to A*x = 0 is returned.
  53. *> \endverbatim
  54. *
  55. * Arguments:
  56. * ==========
  57. *
  58. *> \param[in] UPLO
  59. *> \verbatim
  60. *> UPLO is CHARACTER*1
  61. *> Specifies whether the matrix A is upper or lower triangular.
  62. *> = 'U': Upper triangular
  63. *> = 'L': Lower triangular
  64. *> \endverbatim
  65. *>
  66. *> \param[in] TRANS
  67. *> \verbatim
  68. *> TRANS is CHARACTER*1
  69. *> Specifies the operation applied to A.
  70. *> = 'N': Solve A * x = s*b (No transpose)
  71. *> = 'T': Solve A**T * x = s*b (Transpose)
  72. *> = 'C': Solve A**H * x = s*b (Conjugate transpose)
  73. *> \endverbatim
  74. *>
  75. *> \param[in] DIAG
  76. *> \verbatim
  77. *> DIAG is CHARACTER*1
  78. *> Specifies whether or not the matrix A is unit triangular.
  79. *> = 'N': Non-unit triangular
  80. *> = 'U': Unit triangular
  81. *> \endverbatim
  82. *>
  83. *> \param[in] NORMIN
  84. *> \verbatim
  85. *> NORMIN is CHARACTER*1
  86. *> Specifies whether CNORM has been set or not.
  87. *> = 'Y': CNORM contains the column norms on entry
  88. *> = 'N': CNORM is not set on entry. On exit, the norms will
  89. *> be computed and stored in CNORM.
  90. *> \endverbatim
  91. *>
  92. *> \param[in] N
  93. *> \verbatim
  94. *> N is INTEGER
  95. *> The order of the matrix A. N >= 0.
  96. *> \endverbatim
  97. *>
  98. *> \param[in] AP
  99. *> \verbatim
  100. *> AP is COMPLEX array, dimension (N*(N+1)/2)
  101. *> The upper or lower triangular matrix A, packed columnwise in
  102. *> a linear array. The j-th column of A is stored in the array
  103. *> AP as follows:
  104. *> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
  105. *> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
  106. *> \endverbatim
  107. *>
  108. *> \param[in,out] X
  109. *> \verbatim
  110. *> X is COMPLEX array, dimension (N)
  111. *> On entry, the right hand side b of the triangular system.
  112. *> On exit, X is overwritten by the solution vector x.
  113. *> \endverbatim
  114. *>
  115. *> \param[out] SCALE
  116. *> \verbatim
  117. *> SCALE is REAL
  118. *> The scaling factor s for the triangular system
  119. *> A * x = s*b, A**T * x = s*b, or A**H * x = s*b.
  120. *> If SCALE = 0, the matrix A is singular or badly scaled, and
  121. *> the vector x is an exact or approximate solution to A*x = 0.
  122. *> \endverbatim
  123. *>
  124. *> \param[in,out] CNORM
  125. *> \verbatim
  126. *> CNORM is REAL array, dimension (N)
  127. *>
  128. *> If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
  129. *> contains the norm of the off-diagonal part of the j-th column
  130. *> of A. If TRANS = 'N', CNORM(j) must be greater than or equal
  131. *> to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
  132. *> must be greater than or equal to the 1-norm.
  133. *>
  134. *> If NORMIN = 'N', CNORM is an output argument and CNORM(j)
  135. *> returns the 1-norm of the offdiagonal part of the j-th column
  136. *> of A.
  137. *> \endverbatim
  138. *>
  139. *> \param[out] INFO
  140. *> \verbatim
  141. *> INFO is INTEGER
  142. *> = 0: successful exit
  143. *> < 0: if INFO = -k, the k-th argument had an illegal value
  144. *> \endverbatim
  145. *
  146. * Authors:
  147. * ========
  148. *
  149. *> \author Univ. of Tennessee
  150. *> \author Univ. of California Berkeley
  151. *> \author Univ. of Colorado Denver
  152. *> \author NAG Ltd.
  153. *
  154. *> \date September 2012
  155. *
  156. *> \ingroup complexOTHERauxiliary
  157. *
  158. *> \par Further Details:
  159. * =====================
  160. *>
  161. *> \verbatim
  162. *>
  163. *> A rough bound on x is computed; if that is less than overflow, CTPSV
  164. *> is called, otherwise, specific code is used which checks for possible
  165. *> overflow or divide-by-zero at every operation.
  166. *>
  167. *> A columnwise scheme is used for solving A*x = b. The basic algorithm
  168. *> if A is lower triangular is
  169. *>
  170. *> x[1:n] := b[1:n]
  171. *> for j = 1, ..., n
  172. *> x(j) := x(j) / A(j,j)
  173. *> x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]
  174. *> end
  175. *>
  176. *> Define bounds on the components of x after j iterations of the loop:
  177. *> M(j) = bound on x[1:j]
  178. *> G(j) = bound on x[j+1:n]
  179. *> Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.
  180. *>
  181. *> Then for iteration j+1 we have
  182. *> M(j+1) <= G(j) / | A(j+1,j+1) |
  183. *> G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |
  184. *> <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | )
  185. *>
  186. *> where CNORM(j+1) is greater than or equal to the infinity-norm of
  187. *> column j+1 of A, not counting the diagonal. Hence
  188. *>
  189. *> G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | )
  190. *> 1<=i<=j
  191. *> and
  192. *>
  193. *> |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| )
  194. *> 1<=i< j
  195. *>
  196. *> Since |x(j)| <= M(j), we use the Level 2 BLAS routine CTPSV if the
  197. *> reciprocal of the largest M(j), j=1,..,n, is larger than
  198. *> max(underflow, 1/overflow).
  199. *>
  200. *> The bound on x(j) is also used to determine when a step in the
  201. *> columnwise method can be performed without fear of overflow. If
  202. *> the computed bound is greater than a large constant, x is scaled to
  203. *> prevent overflow, but if the bound overflows, x is set to 0, x(j) to
  204. *> 1, and scale to 0, and a non-trivial solution to A*x = 0 is found.
  205. *>
  206. *> Similarly, a row-wise scheme is used to solve A**T *x = b or
  207. *> A**H *x = b. The basic algorithm for A upper triangular is
  208. *>
  209. *> for j = 1, ..., n
  210. *> x(j) := ( b(j) - A[1:j-1,j]' * x[1:j-1] ) / A(j,j)
  211. *> end
  212. *>
  213. *> We simultaneously compute two bounds
  214. *> G(j) = bound on ( b(i) - A[1:i-1,i]' * x[1:i-1] ), 1<=i<=j
  215. *> M(j) = bound on x(i), 1<=i<=j
  216. *>
  217. *> The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we
  218. *> add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.
  219. *> Then the bound on x(j) is
  220. *>
  221. *> M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |
  222. *>
  223. *> <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )
  224. *> 1<=i<=j
  225. *>
  226. *> and we can safely call CTPSV if 1/M(n) and 1/G(n) are both greater
  227. *> than max(underflow, 1/overflow).
  228. *> \endverbatim
  229. *>
  230. * =====================================================================
  231. SUBROUTINE CLATPS( UPLO, TRANS, DIAG, NORMIN, N, AP, X, SCALE,
  232. $ CNORM, INFO )
  233. *
  234. * -- LAPACK auxiliary routine (version 3.4.2) --
  235. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  236. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  237. * September 2012
  238. *
  239. * .. Scalar Arguments ..
  240. CHARACTER DIAG, NORMIN, TRANS, UPLO
  241. INTEGER INFO, N
  242. REAL SCALE
  243. * ..
  244. * .. Array Arguments ..
  245. REAL CNORM( * )
  246. COMPLEX AP( * ), X( * )
  247. * ..
  248. *
  249. * =====================================================================
  250. *
  251. * .. Parameters ..
  252. REAL ZERO, HALF, ONE, TWO
  253. PARAMETER ( ZERO = 0.0E+0, HALF = 0.5E+0, ONE = 1.0E+0,
  254. $ TWO = 2.0E+0 )
  255. * ..
  256. * .. Local Scalars ..
  257. LOGICAL NOTRAN, NOUNIT, UPPER
  258. INTEGER I, IMAX, IP, J, JFIRST, JINC, JLAST, JLEN
  259. REAL BIGNUM, GROW, REC, SMLNUM, TJJ, TMAX, TSCAL,
  260. $ XBND, XJ, XMAX
  261. COMPLEX CSUMJ, TJJS, USCAL, ZDUM
  262. * ..
  263. * .. External Functions ..
  264. LOGICAL LSAME
  265. INTEGER ICAMAX, ISAMAX
  266. REAL SCASUM, SLAMCH
  267. COMPLEX CDOTC, CDOTU, CLADIV
  268. EXTERNAL LSAME, ICAMAX, ISAMAX, SCASUM, SLAMCH, CDOTC,
  269. $ CDOTU, CLADIV
  270. * ..
  271. * .. External Subroutines ..
  272. EXTERNAL CAXPY, CSSCAL, CTPSV, SLABAD, SSCAL, XERBLA
  273. * ..
  274. * .. Intrinsic Functions ..
  275. INTRINSIC ABS, AIMAG, CMPLX, CONJG, MAX, MIN, REAL
  276. * ..
  277. * .. Statement Functions ..
  278. REAL CABS1, CABS2
  279. * ..
  280. * .. Statement Function definitions ..
  281. CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )
  282. CABS2( ZDUM ) = ABS( REAL( ZDUM ) / 2. ) +
  283. $ ABS( AIMAG( ZDUM ) / 2. )
  284. * ..
  285. * .. Executable Statements ..
  286. *
  287. INFO = 0
  288. UPPER = LSAME( UPLO, 'U' )
  289. NOTRAN = LSAME( TRANS, 'N' )
  290. NOUNIT = LSAME( DIAG, 'N' )
  291. *
  292. * Test the input parameters.
  293. *
  294. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  295. INFO = -1
  296. ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
  297. $ LSAME( TRANS, 'C' ) ) THEN
  298. INFO = -2
  299. ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
  300. INFO = -3
  301. ELSE IF( .NOT.LSAME( NORMIN, 'Y' ) .AND. .NOT.
  302. $ LSAME( NORMIN, 'N' ) ) THEN
  303. INFO = -4
  304. ELSE IF( N.LT.0 ) THEN
  305. INFO = -5
  306. END IF
  307. IF( INFO.NE.0 ) THEN
  308. CALL XERBLA( 'CLATPS', -INFO )
  309. RETURN
  310. END IF
  311. *
  312. * Quick return if possible
  313. *
  314. IF( N.EQ.0 )
  315. $ RETURN
  316. *
  317. * Determine machine dependent parameters to control overflow.
  318. *
  319. SMLNUM = SLAMCH( 'Safe minimum' )
  320. BIGNUM = ONE / SMLNUM
  321. CALL SLABAD( SMLNUM, BIGNUM )
  322. SMLNUM = SMLNUM / SLAMCH( 'Precision' )
  323. BIGNUM = ONE / SMLNUM
  324. SCALE = ONE
  325. *
  326. IF( LSAME( NORMIN, 'N' ) ) THEN
  327. *
  328. * Compute the 1-norm of each column, not including the diagonal.
  329. *
  330. IF( UPPER ) THEN
  331. *
  332. * A is upper triangular.
  333. *
  334. IP = 1
  335. DO 10 J = 1, N
  336. CNORM( J ) = SCASUM( J-1, AP( IP ), 1 )
  337. IP = IP + J
  338. 10 CONTINUE
  339. ELSE
  340. *
  341. * A is lower triangular.
  342. *
  343. IP = 1
  344. DO 20 J = 1, N - 1
  345. CNORM( J ) = SCASUM( N-J, AP( IP+1 ), 1 )
  346. IP = IP + N - J + 1
  347. 20 CONTINUE
  348. CNORM( N ) = ZERO
  349. END IF
  350. END IF
  351. *
  352. * Scale the column norms by TSCAL if the maximum element in CNORM is
  353. * greater than BIGNUM/2.
  354. *
  355. IMAX = ISAMAX( N, CNORM, 1 )
  356. TMAX = CNORM( IMAX )
  357. IF( TMAX.LE.BIGNUM*HALF ) THEN
  358. TSCAL = ONE
  359. ELSE
  360. TSCAL = HALF / ( SMLNUM*TMAX )
  361. CALL SSCAL( N, TSCAL, CNORM, 1 )
  362. END IF
  363. *
  364. * Compute a bound on the computed solution vector to see if the
  365. * Level 2 BLAS routine CTPSV can be used.
  366. *
  367. XMAX = ZERO
  368. DO 30 J = 1, N
  369. XMAX = MAX( XMAX, CABS2( X( J ) ) )
  370. 30 CONTINUE
  371. XBND = XMAX
  372. IF( NOTRAN ) THEN
  373. *
  374. * Compute the growth in A * x = b.
  375. *
  376. IF( UPPER ) THEN
  377. JFIRST = N
  378. JLAST = 1
  379. JINC = -1
  380. ELSE
  381. JFIRST = 1
  382. JLAST = N
  383. JINC = 1
  384. END IF
  385. *
  386. IF( TSCAL.NE.ONE ) THEN
  387. GROW = ZERO
  388. GO TO 60
  389. END IF
  390. *
  391. IF( NOUNIT ) THEN
  392. *
  393. * A is non-unit triangular.
  394. *
  395. * Compute GROW = 1/G(j) and XBND = 1/M(j).
  396. * Initially, G(0) = max{x(i), i=1,...,n}.
  397. *
  398. GROW = HALF / MAX( XBND, SMLNUM )
  399. XBND = GROW
  400. IP = JFIRST*( JFIRST+1 ) / 2
  401. JLEN = N
  402. DO 40 J = JFIRST, JLAST, JINC
  403. *
  404. * Exit the loop if the growth factor is too small.
  405. *
  406. IF( GROW.LE.SMLNUM )
  407. $ GO TO 60
  408. *
  409. TJJS = AP( IP )
  410. TJJ = CABS1( TJJS )
  411. *
  412. IF( TJJ.GE.SMLNUM ) THEN
  413. *
  414. * M(j) = G(j-1) / abs(A(j,j))
  415. *
  416. XBND = MIN( XBND, MIN( ONE, TJJ )*GROW )
  417. ELSE
  418. *
  419. * M(j) could overflow, set XBND to 0.
  420. *
  421. XBND = ZERO
  422. END IF
  423. *
  424. IF( TJJ+CNORM( J ).GE.SMLNUM ) THEN
  425. *
  426. * G(j) = G(j-1)*( 1 + CNORM(j) / abs(A(j,j)) )
  427. *
  428. GROW = GROW*( TJJ / ( TJJ+CNORM( J ) ) )
  429. ELSE
  430. *
  431. * G(j) could overflow, set GROW to 0.
  432. *
  433. GROW = ZERO
  434. END IF
  435. IP = IP + JINC*JLEN
  436. JLEN = JLEN - 1
  437. 40 CONTINUE
  438. GROW = XBND
  439. ELSE
  440. *
  441. * A is unit triangular.
  442. *
  443. * Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
  444. *
  445. GROW = MIN( ONE, HALF / MAX( XBND, SMLNUM ) )
  446. DO 50 J = JFIRST, JLAST, JINC
  447. *
  448. * Exit the loop if the growth factor is too small.
  449. *
  450. IF( GROW.LE.SMLNUM )
  451. $ GO TO 60
  452. *
  453. * G(j) = G(j-1)*( 1 + CNORM(j) )
  454. *
  455. GROW = GROW*( ONE / ( ONE+CNORM( J ) ) )
  456. 50 CONTINUE
  457. END IF
  458. 60 CONTINUE
  459. *
  460. ELSE
  461. *
  462. * Compute the growth in A**T * x = b or A**H * x = b.
  463. *
  464. IF( UPPER ) THEN
  465. JFIRST = 1
  466. JLAST = N
  467. JINC = 1
  468. ELSE
  469. JFIRST = N
  470. JLAST = 1
  471. JINC = -1
  472. END IF
  473. *
  474. IF( TSCAL.NE.ONE ) THEN
  475. GROW = ZERO
  476. GO TO 90
  477. END IF
  478. *
  479. IF( NOUNIT ) THEN
  480. *
  481. * A is non-unit triangular.
  482. *
  483. * Compute GROW = 1/G(j) and XBND = 1/M(j).
  484. * Initially, M(0) = max{x(i), i=1,...,n}.
  485. *
  486. GROW = HALF / MAX( XBND, SMLNUM )
  487. XBND = GROW
  488. IP = JFIRST*( JFIRST+1 ) / 2
  489. JLEN = 1
  490. DO 70 J = JFIRST, JLAST, JINC
  491. *
  492. * Exit the loop if the growth factor is too small.
  493. *
  494. IF( GROW.LE.SMLNUM )
  495. $ GO TO 90
  496. *
  497. * G(j) = max( G(j-1), M(j-1)*( 1 + CNORM(j) ) )
  498. *
  499. XJ = ONE + CNORM( J )
  500. GROW = MIN( GROW, XBND / XJ )
  501. *
  502. TJJS = AP( IP )
  503. TJJ = CABS1( TJJS )
  504. *
  505. IF( TJJ.GE.SMLNUM ) THEN
  506. *
  507. * M(j) = M(j-1)*( 1 + CNORM(j) ) / abs(A(j,j))
  508. *
  509. IF( XJ.GT.TJJ )
  510. $ XBND = XBND*( TJJ / XJ )
  511. ELSE
  512. *
  513. * M(j) could overflow, set XBND to 0.
  514. *
  515. XBND = ZERO
  516. END IF
  517. JLEN = JLEN + 1
  518. IP = IP + JINC*JLEN
  519. 70 CONTINUE
  520. GROW = MIN( GROW, XBND )
  521. ELSE
  522. *
  523. * A is unit triangular.
  524. *
  525. * Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
  526. *
  527. GROW = MIN( ONE, HALF / MAX( XBND, SMLNUM ) )
  528. DO 80 J = JFIRST, JLAST, JINC
  529. *
  530. * Exit the loop if the growth factor is too small.
  531. *
  532. IF( GROW.LE.SMLNUM )
  533. $ GO TO 90
  534. *
  535. * G(j) = ( 1 + CNORM(j) )*G(j-1)
  536. *
  537. XJ = ONE + CNORM( J )
  538. GROW = GROW / XJ
  539. 80 CONTINUE
  540. END IF
  541. 90 CONTINUE
  542. END IF
  543. *
  544. IF( ( GROW*TSCAL ).GT.SMLNUM ) THEN
  545. *
  546. * Use the Level 2 BLAS solve if the reciprocal of the bound on
  547. * elements of X is not too small.
  548. *
  549. CALL CTPSV( UPLO, TRANS, DIAG, N, AP, X, 1 )
  550. ELSE
  551. *
  552. * Use a Level 1 BLAS solve, scaling intermediate results.
  553. *
  554. IF( XMAX.GT.BIGNUM*HALF ) THEN
  555. *
  556. * Scale X so that its components are less than or equal to
  557. * BIGNUM in absolute value.
  558. *
  559. SCALE = ( BIGNUM*HALF ) / XMAX
  560. CALL CSSCAL( N, SCALE, X, 1 )
  561. XMAX = BIGNUM
  562. ELSE
  563. XMAX = XMAX*TWO
  564. END IF
  565. *
  566. IF( NOTRAN ) THEN
  567. *
  568. * Solve A * x = b
  569. *
  570. IP = JFIRST*( JFIRST+1 ) / 2
  571. DO 110 J = JFIRST, JLAST, JINC
  572. *
  573. * Compute x(j) = b(j) / A(j,j), scaling x if necessary.
  574. *
  575. XJ = CABS1( X( J ) )
  576. IF( NOUNIT ) THEN
  577. TJJS = AP( IP )*TSCAL
  578. ELSE
  579. TJJS = TSCAL
  580. IF( TSCAL.EQ.ONE )
  581. $ GO TO 105
  582. END IF
  583. TJJ = CABS1( TJJS )
  584. IF( TJJ.GT.SMLNUM ) THEN
  585. *
  586. * abs(A(j,j)) > SMLNUM:
  587. *
  588. IF( TJJ.LT.ONE ) THEN
  589. IF( XJ.GT.TJJ*BIGNUM ) THEN
  590. *
  591. * Scale x by 1/b(j).
  592. *
  593. REC = ONE / XJ
  594. CALL CSSCAL( N, REC, X, 1 )
  595. SCALE = SCALE*REC
  596. XMAX = XMAX*REC
  597. END IF
  598. END IF
  599. X( J ) = CLADIV( X( J ), TJJS )
  600. XJ = CABS1( X( J ) )
  601. ELSE IF( TJJ.GT.ZERO ) THEN
  602. *
  603. * 0 < abs(A(j,j)) <= SMLNUM:
  604. *
  605. IF( XJ.GT.TJJ*BIGNUM ) THEN
  606. *
  607. * Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM
  608. * to avoid overflow when dividing by A(j,j).
  609. *
  610. REC = ( TJJ*BIGNUM ) / XJ
  611. IF( CNORM( J ).GT.ONE ) THEN
  612. *
  613. * Scale by 1/CNORM(j) to avoid overflow when
  614. * multiplying x(j) times column j.
  615. *
  616. REC = REC / CNORM( J )
  617. END IF
  618. CALL CSSCAL( N, REC, X, 1 )
  619. SCALE = SCALE*REC
  620. XMAX = XMAX*REC
  621. END IF
  622. X( J ) = CLADIV( X( J ), TJJS )
  623. XJ = CABS1( X( J ) )
  624. ELSE
  625. *
  626. * A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and
  627. * scale = 0, and compute a solution to A*x = 0.
  628. *
  629. DO 100 I = 1, N
  630. X( I ) = ZERO
  631. 100 CONTINUE
  632. X( J ) = ONE
  633. XJ = ONE
  634. SCALE = ZERO
  635. XMAX = ZERO
  636. END IF
  637. 105 CONTINUE
  638. *
  639. * Scale x if necessary to avoid overflow when adding a
  640. * multiple of column j of A.
  641. *
  642. IF( XJ.GT.ONE ) THEN
  643. REC = ONE / XJ
  644. IF( CNORM( J ).GT.( BIGNUM-XMAX )*REC ) THEN
  645. *
  646. * Scale x by 1/(2*abs(x(j))).
  647. *
  648. REC = REC*HALF
  649. CALL CSSCAL( N, REC, X, 1 )
  650. SCALE = SCALE*REC
  651. END IF
  652. ELSE IF( XJ*CNORM( J ).GT.( BIGNUM-XMAX ) ) THEN
  653. *
  654. * Scale x by 1/2.
  655. *
  656. CALL CSSCAL( N, HALF, X, 1 )
  657. SCALE = SCALE*HALF
  658. END IF
  659. *
  660. IF( UPPER ) THEN
  661. IF( J.GT.1 ) THEN
  662. *
  663. * Compute the update
  664. * x(1:j-1) := x(1:j-1) - x(j) * A(1:j-1,j)
  665. *
  666. CALL CAXPY( J-1, -X( J )*TSCAL, AP( IP-J+1 ), 1, X,
  667. $ 1 )
  668. I = ICAMAX( J-1, X, 1 )
  669. XMAX = CABS1( X( I ) )
  670. END IF
  671. IP = IP - J
  672. ELSE
  673. IF( J.LT.N ) THEN
  674. *
  675. * Compute the update
  676. * x(j+1:n) := x(j+1:n) - x(j) * A(j+1:n,j)
  677. *
  678. CALL CAXPY( N-J, -X( J )*TSCAL, AP( IP+1 ), 1,
  679. $ X( J+1 ), 1 )
  680. I = J + ICAMAX( N-J, X( J+1 ), 1 )
  681. XMAX = CABS1( X( I ) )
  682. END IF
  683. IP = IP + N - J + 1
  684. END IF
  685. 110 CONTINUE
  686. *
  687. ELSE IF( LSAME( TRANS, 'T' ) ) THEN
  688. *
  689. * Solve A**T * x = b
  690. *
  691. IP = JFIRST*( JFIRST+1 ) / 2
  692. JLEN = 1
  693. DO 150 J = JFIRST, JLAST, JINC
  694. *
  695. * Compute x(j) = b(j) - sum A(k,j)*x(k).
  696. * k<>j
  697. *
  698. XJ = CABS1( X( J ) )
  699. USCAL = TSCAL
  700. REC = ONE / MAX( XMAX, ONE )
  701. IF( CNORM( J ).GT.( BIGNUM-XJ )*REC ) THEN
  702. *
  703. * If x(j) could overflow, scale x by 1/(2*XMAX).
  704. *
  705. REC = REC*HALF
  706. IF( NOUNIT ) THEN
  707. TJJS = AP( IP )*TSCAL
  708. ELSE
  709. TJJS = TSCAL
  710. END IF
  711. TJJ = CABS1( TJJS )
  712. IF( TJJ.GT.ONE ) THEN
  713. *
  714. * Divide by A(j,j) when scaling x if A(j,j) > 1.
  715. *
  716. REC = MIN( ONE, REC*TJJ )
  717. USCAL = CLADIV( USCAL, TJJS )
  718. END IF
  719. IF( REC.LT.ONE ) THEN
  720. CALL CSSCAL( N, REC, X, 1 )
  721. SCALE = SCALE*REC
  722. XMAX = XMAX*REC
  723. END IF
  724. END IF
  725. *
  726. CSUMJ = ZERO
  727. IF( USCAL.EQ.CMPLX( ONE ) ) THEN
  728. *
  729. * If the scaling needed for A in the dot product is 1,
  730. * call CDOTU to perform the dot product.
  731. *
  732. IF( UPPER ) THEN
  733. CSUMJ = CDOTU( J-1, AP( IP-J+1 ), 1, X, 1 )
  734. ELSE IF( J.LT.N ) THEN
  735. CSUMJ = CDOTU( N-J, AP( IP+1 ), 1, X( J+1 ), 1 )
  736. END IF
  737. ELSE
  738. *
  739. * Otherwise, use in-line code for the dot product.
  740. *
  741. IF( UPPER ) THEN
  742. DO 120 I = 1, J - 1
  743. CSUMJ = CSUMJ + ( AP( IP-J+I )*USCAL )*X( I )
  744. 120 CONTINUE
  745. ELSE IF( J.LT.N ) THEN
  746. DO 130 I = 1, N - J
  747. CSUMJ = CSUMJ + ( AP( IP+I )*USCAL )*X( J+I )
  748. 130 CONTINUE
  749. END IF
  750. END IF
  751. *
  752. IF( USCAL.EQ.CMPLX( TSCAL ) ) THEN
  753. *
  754. * Compute x(j) := ( x(j) - CSUMJ ) / A(j,j) if 1/A(j,j)
  755. * was not used to scale the dotproduct.
  756. *
  757. X( J ) = X( J ) - CSUMJ
  758. XJ = CABS1( X( J ) )
  759. IF( NOUNIT ) THEN
  760. *
  761. * Compute x(j) = x(j) / A(j,j), scaling if necessary.
  762. *
  763. TJJS = AP( IP )*TSCAL
  764. ELSE
  765. TJJS = TSCAL
  766. IF( TSCAL.EQ.ONE )
  767. $ GO TO 145
  768. END IF
  769. TJJ = CABS1( TJJS )
  770. IF( TJJ.GT.SMLNUM ) THEN
  771. *
  772. * abs(A(j,j)) > SMLNUM:
  773. *
  774. IF( TJJ.LT.ONE ) THEN
  775. IF( XJ.GT.TJJ*BIGNUM ) THEN
  776. *
  777. * Scale X by 1/abs(x(j)).
  778. *
  779. REC = ONE / XJ
  780. CALL CSSCAL( N, REC, X, 1 )
  781. SCALE = SCALE*REC
  782. XMAX = XMAX*REC
  783. END IF
  784. END IF
  785. X( J ) = CLADIV( X( J ), TJJS )
  786. ELSE IF( TJJ.GT.ZERO ) THEN
  787. *
  788. * 0 < abs(A(j,j)) <= SMLNUM:
  789. *
  790. IF( XJ.GT.TJJ*BIGNUM ) THEN
  791. *
  792. * Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.
  793. *
  794. REC = ( TJJ*BIGNUM ) / XJ
  795. CALL CSSCAL( N, REC, X, 1 )
  796. SCALE = SCALE*REC
  797. XMAX = XMAX*REC
  798. END IF
  799. X( J ) = CLADIV( X( J ), TJJS )
  800. ELSE
  801. *
  802. * A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and
  803. * scale = 0 and compute a solution to A**T *x = 0.
  804. *
  805. DO 140 I = 1, N
  806. X( I ) = ZERO
  807. 140 CONTINUE
  808. X( J ) = ONE
  809. SCALE = ZERO
  810. XMAX = ZERO
  811. END IF
  812. 145 CONTINUE
  813. ELSE
  814. *
  815. * Compute x(j) := x(j) / A(j,j) - CSUMJ if the dot
  816. * product has already been divided by 1/A(j,j).
  817. *
  818. X( J ) = CLADIV( X( J ), TJJS ) - CSUMJ
  819. END IF
  820. XMAX = MAX( XMAX, CABS1( X( J ) ) )
  821. JLEN = JLEN + 1
  822. IP = IP + JINC*JLEN
  823. 150 CONTINUE
  824. *
  825. ELSE
  826. *
  827. * Solve A**H * x = b
  828. *
  829. IP = JFIRST*( JFIRST+1 ) / 2
  830. JLEN = 1
  831. DO 190 J = JFIRST, JLAST, JINC
  832. *
  833. * Compute x(j) = b(j) - sum A(k,j)*x(k).
  834. * k<>j
  835. *
  836. XJ = CABS1( X( J ) )
  837. USCAL = TSCAL
  838. REC = ONE / MAX( XMAX, ONE )
  839. IF( CNORM( J ).GT.( BIGNUM-XJ )*REC ) THEN
  840. *
  841. * If x(j) could overflow, scale x by 1/(2*XMAX).
  842. *
  843. REC = REC*HALF
  844. IF( NOUNIT ) THEN
  845. TJJS = CONJG( AP( IP ) )*TSCAL
  846. ELSE
  847. TJJS = TSCAL
  848. END IF
  849. TJJ = CABS1( TJJS )
  850. IF( TJJ.GT.ONE ) THEN
  851. *
  852. * Divide by A(j,j) when scaling x if A(j,j) > 1.
  853. *
  854. REC = MIN( ONE, REC*TJJ )
  855. USCAL = CLADIV( USCAL, TJJS )
  856. END IF
  857. IF( REC.LT.ONE ) THEN
  858. CALL CSSCAL( N, REC, X, 1 )
  859. SCALE = SCALE*REC
  860. XMAX = XMAX*REC
  861. END IF
  862. END IF
  863. *
  864. CSUMJ = ZERO
  865. IF( USCAL.EQ.CMPLX( ONE ) ) THEN
  866. *
  867. * If the scaling needed for A in the dot product is 1,
  868. * call CDOTC to perform the dot product.
  869. *
  870. IF( UPPER ) THEN
  871. CSUMJ = CDOTC( J-1, AP( IP-J+1 ), 1, X, 1 )
  872. ELSE IF( J.LT.N ) THEN
  873. CSUMJ = CDOTC( N-J, AP( IP+1 ), 1, X( J+1 ), 1 )
  874. END IF
  875. ELSE
  876. *
  877. * Otherwise, use in-line code for the dot product.
  878. *
  879. IF( UPPER ) THEN
  880. DO 160 I = 1, J - 1
  881. CSUMJ = CSUMJ + ( CONJG( AP( IP-J+I ) )*USCAL )*
  882. $ X( I )
  883. 160 CONTINUE
  884. ELSE IF( J.LT.N ) THEN
  885. DO 170 I = 1, N - J
  886. CSUMJ = CSUMJ + ( CONJG( AP( IP+I ) )*USCAL )*
  887. $ X( J+I )
  888. 170 CONTINUE
  889. END IF
  890. END IF
  891. *
  892. IF( USCAL.EQ.CMPLX( TSCAL ) ) THEN
  893. *
  894. * Compute x(j) := ( x(j) - CSUMJ ) / A(j,j) if 1/A(j,j)
  895. * was not used to scale the dotproduct.
  896. *
  897. X( J ) = X( J ) - CSUMJ
  898. XJ = CABS1( X( J ) )
  899. IF( NOUNIT ) THEN
  900. *
  901. * Compute x(j) = x(j) / A(j,j), scaling if necessary.
  902. *
  903. TJJS = CONJG( AP( IP ) )*TSCAL
  904. ELSE
  905. TJJS = TSCAL
  906. IF( TSCAL.EQ.ONE )
  907. $ GO TO 185
  908. END IF
  909. TJJ = CABS1( TJJS )
  910. IF( TJJ.GT.SMLNUM ) THEN
  911. *
  912. * abs(A(j,j)) > SMLNUM:
  913. *
  914. IF( TJJ.LT.ONE ) THEN
  915. IF( XJ.GT.TJJ*BIGNUM ) THEN
  916. *
  917. * Scale X by 1/abs(x(j)).
  918. *
  919. REC = ONE / XJ
  920. CALL CSSCAL( N, REC, X, 1 )
  921. SCALE = SCALE*REC
  922. XMAX = XMAX*REC
  923. END IF
  924. END IF
  925. X( J ) = CLADIV( X( J ), TJJS )
  926. ELSE IF( TJJ.GT.ZERO ) THEN
  927. *
  928. * 0 < abs(A(j,j)) <= SMLNUM:
  929. *
  930. IF( XJ.GT.TJJ*BIGNUM ) THEN
  931. *
  932. * Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.
  933. *
  934. REC = ( TJJ*BIGNUM ) / XJ
  935. CALL CSSCAL( N, REC, X, 1 )
  936. SCALE = SCALE*REC
  937. XMAX = XMAX*REC
  938. END IF
  939. X( J ) = CLADIV( X( J ), TJJS )
  940. ELSE
  941. *
  942. * A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and
  943. * scale = 0 and compute a solution to A**H *x = 0.
  944. *
  945. DO 180 I = 1, N
  946. X( I ) = ZERO
  947. 180 CONTINUE
  948. X( J ) = ONE
  949. SCALE = ZERO
  950. XMAX = ZERO
  951. END IF
  952. 185 CONTINUE
  953. ELSE
  954. *
  955. * Compute x(j) := x(j) / A(j,j) - CSUMJ if the dot
  956. * product has already been divided by 1/A(j,j).
  957. *
  958. X( J ) = CLADIV( X( J ), TJJS ) - CSUMJ
  959. END IF
  960. XMAX = MAX( XMAX, CABS1( X( J ) ) )
  961. JLEN = JLEN + 1
  962. IP = IP + JINC*JLEN
  963. 190 CONTINUE
  964. END IF
  965. SCALE = SCALE / TSCAL
  966. END IF
  967. *
  968. * Scale the column norms by 1/TSCAL for return.
  969. *
  970. IF( TSCAL.NE.ONE ) THEN
  971. CALL SSCAL( N, ONE / TSCAL, CNORM, 1 )
  972. END IF
  973. *
  974. RETURN
  975. *
  976. * End of CLATPS
  977. *
  978. END