You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

clarzb.f 9.5 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337
  1. *> \brief \b CLARZB applies a block reflector or its conjugate-transpose to a general matrix.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CLARZB + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clarzb.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clarzb.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clarzb.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CLARZB( SIDE, TRANS, DIRECT, STOREV, M, N, K, L, V,
  22. * LDV, T, LDT, C, LDC, WORK, LDWORK )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER DIRECT, SIDE, STOREV, TRANS
  26. * INTEGER K, L, LDC, LDT, LDV, LDWORK, M, N
  27. * ..
  28. * .. Array Arguments ..
  29. * COMPLEX C( LDC, * ), T( LDT, * ), V( LDV, * ),
  30. * $ WORK( LDWORK, * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> CLARZB applies a complex block reflector H or its transpose H**H
  40. *> to a complex distributed M-by-N C from the left or the right.
  41. *>
  42. *> Currently, only STOREV = 'R' and DIRECT = 'B' are supported.
  43. *> \endverbatim
  44. *
  45. * Arguments:
  46. * ==========
  47. *
  48. *> \param[in] SIDE
  49. *> \verbatim
  50. *> SIDE is CHARACTER*1
  51. *> = 'L': apply H or H**H from the Left
  52. *> = 'R': apply H or H**H from the Right
  53. *> \endverbatim
  54. *>
  55. *> \param[in] TRANS
  56. *> \verbatim
  57. *> TRANS is CHARACTER*1
  58. *> = 'N': apply H (No transpose)
  59. *> = 'C': apply H**H (Conjugate transpose)
  60. *> \endverbatim
  61. *>
  62. *> \param[in] DIRECT
  63. *> \verbatim
  64. *> DIRECT is CHARACTER*1
  65. *> Indicates how H is formed from a product of elementary
  66. *> reflectors
  67. *> = 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet)
  68. *> = 'B': H = H(k) . . . H(2) H(1) (Backward)
  69. *> \endverbatim
  70. *>
  71. *> \param[in] STOREV
  72. *> \verbatim
  73. *> STOREV is CHARACTER*1
  74. *> Indicates how the vectors which define the elementary
  75. *> reflectors are stored:
  76. *> = 'C': Columnwise (not supported yet)
  77. *> = 'R': Rowwise
  78. *> \endverbatim
  79. *>
  80. *> \param[in] M
  81. *> \verbatim
  82. *> M is INTEGER
  83. *> The number of rows of the matrix C.
  84. *> \endverbatim
  85. *>
  86. *> \param[in] N
  87. *> \verbatim
  88. *> N is INTEGER
  89. *> The number of columns of the matrix C.
  90. *> \endverbatim
  91. *>
  92. *> \param[in] K
  93. *> \verbatim
  94. *> K is INTEGER
  95. *> The order of the matrix T (= the number of elementary
  96. *> reflectors whose product defines the block reflector).
  97. *> \endverbatim
  98. *>
  99. *> \param[in] L
  100. *> \verbatim
  101. *> L is INTEGER
  102. *> The number of columns of the matrix V containing the
  103. *> meaningful part of the Householder reflectors.
  104. *> If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.
  105. *> \endverbatim
  106. *>
  107. *> \param[in] V
  108. *> \verbatim
  109. *> V is COMPLEX array, dimension (LDV,NV).
  110. *> If STOREV = 'C', NV = K; if STOREV = 'R', NV = L.
  111. *> \endverbatim
  112. *>
  113. *> \param[in] LDV
  114. *> \verbatim
  115. *> LDV is INTEGER
  116. *> The leading dimension of the array V.
  117. *> If STOREV = 'C', LDV >= L; if STOREV = 'R', LDV >= K.
  118. *> \endverbatim
  119. *>
  120. *> \param[in] T
  121. *> \verbatim
  122. *> T is COMPLEX array, dimension (LDT,K)
  123. *> The triangular K-by-K matrix T in the representation of the
  124. *> block reflector.
  125. *> \endverbatim
  126. *>
  127. *> \param[in] LDT
  128. *> \verbatim
  129. *> LDT is INTEGER
  130. *> The leading dimension of the array T. LDT >= K.
  131. *> \endverbatim
  132. *>
  133. *> \param[in,out] C
  134. *> \verbatim
  135. *> C is COMPLEX array, dimension (LDC,N)
  136. *> On entry, the M-by-N matrix C.
  137. *> On exit, C is overwritten by H*C or H**H*C or C*H or C*H**H.
  138. *> \endverbatim
  139. *>
  140. *> \param[in] LDC
  141. *> \verbatim
  142. *> LDC is INTEGER
  143. *> The leading dimension of the array C. LDC >= max(1,M).
  144. *> \endverbatim
  145. *>
  146. *> \param[out] WORK
  147. *> \verbatim
  148. *> WORK is COMPLEX array, dimension (LDWORK,K)
  149. *> \endverbatim
  150. *>
  151. *> \param[in] LDWORK
  152. *> \verbatim
  153. *> LDWORK is INTEGER
  154. *> The leading dimension of the array WORK.
  155. *> If SIDE = 'L', LDWORK >= max(1,N);
  156. *> if SIDE = 'R', LDWORK >= max(1,M).
  157. *> \endverbatim
  158. *
  159. * Authors:
  160. * ========
  161. *
  162. *> \author Univ. of Tennessee
  163. *> \author Univ. of California Berkeley
  164. *> \author Univ. of Colorado Denver
  165. *> \author NAG Ltd.
  166. *
  167. *> \date September 2012
  168. *
  169. *> \ingroup complexOTHERcomputational
  170. *
  171. *> \par Contributors:
  172. * ==================
  173. *>
  174. *> A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
  175. *
  176. *> \par Further Details:
  177. * =====================
  178. *>
  179. *> \verbatim
  180. *> \endverbatim
  181. *>
  182. * =====================================================================
  183. SUBROUTINE CLARZB( SIDE, TRANS, DIRECT, STOREV, M, N, K, L, V,
  184. $ LDV, T, LDT, C, LDC, WORK, LDWORK )
  185. *
  186. * -- LAPACK computational routine (version 3.4.2) --
  187. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  188. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  189. * September 2012
  190. *
  191. * .. Scalar Arguments ..
  192. CHARACTER DIRECT, SIDE, STOREV, TRANS
  193. INTEGER K, L, LDC, LDT, LDV, LDWORK, M, N
  194. * ..
  195. * .. Array Arguments ..
  196. COMPLEX C( LDC, * ), T( LDT, * ), V( LDV, * ),
  197. $ WORK( LDWORK, * )
  198. * ..
  199. *
  200. * =====================================================================
  201. *
  202. * .. Parameters ..
  203. COMPLEX ONE
  204. PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ) )
  205. * ..
  206. * .. Local Scalars ..
  207. CHARACTER TRANST
  208. INTEGER I, INFO, J
  209. * ..
  210. * .. External Functions ..
  211. LOGICAL LSAME
  212. EXTERNAL LSAME
  213. * ..
  214. * .. External Subroutines ..
  215. EXTERNAL CCOPY, CGEMM, CLACGV, CTRMM, XERBLA
  216. * ..
  217. * .. Executable Statements ..
  218. *
  219. * Quick return if possible
  220. *
  221. IF( M.LE.0 .OR. N.LE.0 )
  222. $ RETURN
  223. *
  224. * Check for currently supported options
  225. *
  226. INFO = 0
  227. IF( .NOT.LSAME( DIRECT, 'B' ) ) THEN
  228. INFO = -3
  229. ELSE IF( .NOT.LSAME( STOREV, 'R' ) ) THEN
  230. INFO = -4
  231. END IF
  232. IF( INFO.NE.0 ) THEN
  233. CALL XERBLA( 'CLARZB', -INFO )
  234. RETURN
  235. END IF
  236. *
  237. IF( LSAME( TRANS, 'N' ) ) THEN
  238. TRANST = 'C'
  239. ELSE
  240. TRANST = 'N'
  241. END IF
  242. *
  243. IF( LSAME( SIDE, 'L' ) ) THEN
  244. *
  245. * Form H * C or H**H * C
  246. *
  247. * W( 1:n, 1:k ) = C( 1:k, 1:n )**H
  248. *
  249. DO 10 J = 1, K
  250. CALL CCOPY( N, C( J, 1 ), LDC, WORK( 1, J ), 1 )
  251. 10 CONTINUE
  252. *
  253. * W( 1:n, 1:k ) = W( 1:n, 1:k ) + ...
  254. * C( m-l+1:m, 1:n )**H * V( 1:k, 1:l )**T
  255. *
  256. IF( L.GT.0 )
  257. $ CALL CGEMM( 'Transpose', 'Conjugate transpose', N, K, L,
  258. $ ONE, C( M-L+1, 1 ), LDC, V, LDV, ONE, WORK,
  259. $ LDWORK )
  260. *
  261. * W( 1:n, 1:k ) = W( 1:n, 1:k ) * T**T or W( 1:m, 1:k ) * T
  262. *
  263. CALL CTRMM( 'Right', 'Lower', TRANST, 'Non-unit', N, K, ONE, T,
  264. $ LDT, WORK, LDWORK )
  265. *
  266. * C( 1:k, 1:n ) = C( 1:k, 1:n ) - W( 1:n, 1:k )**H
  267. *
  268. DO 30 J = 1, N
  269. DO 20 I = 1, K
  270. C( I, J ) = C( I, J ) - WORK( J, I )
  271. 20 CONTINUE
  272. 30 CONTINUE
  273. *
  274. * C( m-l+1:m, 1:n ) = C( m-l+1:m, 1:n ) - ...
  275. * V( 1:k, 1:l )**H * W( 1:n, 1:k )**H
  276. *
  277. IF( L.GT.0 )
  278. $ CALL CGEMM( 'Transpose', 'Transpose', L, N, K, -ONE, V, LDV,
  279. $ WORK, LDWORK, ONE, C( M-L+1, 1 ), LDC )
  280. *
  281. ELSE IF( LSAME( SIDE, 'R' ) ) THEN
  282. *
  283. * Form C * H or C * H**H
  284. *
  285. * W( 1:m, 1:k ) = C( 1:m, 1:k )
  286. *
  287. DO 40 J = 1, K
  288. CALL CCOPY( M, C( 1, J ), 1, WORK( 1, J ), 1 )
  289. 40 CONTINUE
  290. *
  291. * W( 1:m, 1:k ) = W( 1:m, 1:k ) + ...
  292. * C( 1:m, n-l+1:n ) * V( 1:k, 1:l )**H
  293. *
  294. IF( L.GT.0 )
  295. $ CALL CGEMM( 'No transpose', 'Transpose', M, K, L, ONE,
  296. $ C( 1, N-L+1 ), LDC, V, LDV, ONE, WORK, LDWORK )
  297. *
  298. * W( 1:m, 1:k ) = W( 1:m, 1:k ) * conjg( T ) or
  299. * W( 1:m, 1:k ) * T**H
  300. *
  301. DO 50 J = 1, K
  302. CALL CLACGV( K-J+1, T( J, J ), 1 )
  303. 50 CONTINUE
  304. CALL CTRMM( 'Right', 'Lower', TRANS, 'Non-unit', M, K, ONE, T,
  305. $ LDT, WORK, LDWORK )
  306. DO 60 J = 1, K
  307. CALL CLACGV( K-J+1, T( J, J ), 1 )
  308. 60 CONTINUE
  309. *
  310. * C( 1:m, 1:k ) = C( 1:m, 1:k ) - W( 1:m, 1:k )
  311. *
  312. DO 80 J = 1, K
  313. DO 70 I = 1, M
  314. C( I, J ) = C( I, J ) - WORK( I, J )
  315. 70 CONTINUE
  316. 80 CONTINUE
  317. *
  318. * C( 1:m, n-l+1:n ) = C( 1:m, n-l+1:n ) - ...
  319. * W( 1:m, 1:k ) * conjg( V( 1:k, 1:l ) )
  320. *
  321. DO 90 J = 1, L
  322. CALL CLACGV( K, V( 1, J ), 1 )
  323. 90 CONTINUE
  324. IF( L.GT.0 )
  325. $ CALL CGEMM( 'No transpose', 'No transpose', M, L, K, -ONE,
  326. $ WORK, LDWORK, V, LDV, ONE, C( 1, N-L+1 ), LDC )
  327. DO 100 J = 1, L
  328. CALL CLACGV( K, V( 1, J ), 1 )
  329. 100 CONTINUE
  330. *
  331. END IF
  332. *
  333. RETURN
  334. *
  335. * End of CLARZB
  336. *
  337. END