You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

chegs2.f 9.5 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296
  1. *> \brief \b CHEGS2 reduces a Hermitian definite generalized eigenproblem to standard form, using the factorization results obtained from cpotrf (unblocked algorithm).
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CHEGS2 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chegs2.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chegs2.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chegs2.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CHEGS2( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER UPLO
  25. * INTEGER INFO, ITYPE, LDA, LDB, N
  26. * ..
  27. * .. Array Arguments ..
  28. * COMPLEX A( LDA, * ), B( LDB, * )
  29. * ..
  30. *
  31. *
  32. *> \par Purpose:
  33. * =============
  34. *>
  35. *> \verbatim
  36. *>
  37. *> CHEGS2 reduces a complex Hermitian-definite generalized
  38. *> eigenproblem to standard form.
  39. *>
  40. *> If ITYPE = 1, the problem is A*x = lambda*B*x,
  41. *> and A is overwritten by inv(U**H)*A*inv(U) or inv(L)*A*inv(L**H)
  42. *>
  43. *> If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
  44. *> B*A*x = lambda*x, and A is overwritten by U*A*U**H or L**H *A*L.
  45. *>
  46. *> B must have been previously factorized as U**H *U or L*L**H by ZPOTRF.
  47. *> \endverbatim
  48. *
  49. * Arguments:
  50. * ==========
  51. *
  52. *> \param[in] ITYPE
  53. *> \verbatim
  54. *> ITYPE is INTEGER
  55. *> = 1: compute inv(U**H)*A*inv(U) or inv(L)*A*inv(L**H);
  56. *> = 2 or 3: compute U*A*U**H or L**H *A*L.
  57. *> \endverbatim
  58. *>
  59. *> \param[in] UPLO
  60. *> \verbatim
  61. *> UPLO is CHARACTER*1
  62. *> Specifies whether the upper or lower triangular part of the
  63. *> Hermitian matrix A is stored, and how B has been factorized.
  64. *> = 'U': Upper triangular
  65. *> = 'L': Lower triangular
  66. *> \endverbatim
  67. *>
  68. *> \param[in] N
  69. *> \verbatim
  70. *> N is INTEGER
  71. *> The order of the matrices A and B. N >= 0.
  72. *> \endverbatim
  73. *>
  74. *> \param[in,out] A
  75. *> \verbatim
  76. *> A is COMPLEX array, dimension (LDA,N)
  77. *> On entry, the Hermitian matrix A. If UPLO = 'U', the leading
  78. *> n by n upper triangular part of A contains the upper
  79. *> triangular part of the matrix A, and the strictly lower
  80. *> triangular part of A is not referenced. If UPLO = 'L', the
  81. *> leading n by n lower triangular part of A contains the lower
  82. *> triangular part of the matrix A, and the strictly upper
  83. *> triangular part of A is not referenced.
  84. *>
  85. *> On exit, if INFO = 0, the transformed matrix, stored in the
  86. *> same format as A.
  87. *> \endverbatim
  88. *>
  89. *> \param[in] LDA
  90. *> \verbatim
  91. *> LDA is INTEGER
  92. *> The leading dimension of the array A. LDA >= max(1,N).
  93. *> \endverbatim
  94. *>
  95. *> \param[in,out] B
  96. *> \verbatim
  97. *> B is COMPLEX array, dimension (LDB,N)
  98. *> The triangular factor from the Cholesky factorization of B,
  99. *> as returned by CPOTRF.
  100. *> \endverbatim
  101. *>
  102. *> \param[in] LDB
  103. *> \verbatim
  104. *> LDB is INTEGER
  105. *> The leading dimension of the array B. LDB >= max(1,N).
  106. *> \endverbatim
  107. *>
  108. *> \param[out] INFO
  109. *> \verbatim
  110. *> INFO is INTEGER
  111. *> = 0: successful exit.
  112. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  113. *> \endverbatim
  114. *
  115. * Authors:
  116. * ========
  117. *
  118. *> \author Univ. of Tennessee
  119. *> \author Univ. of California Berkeley
  120. *> \author Univ. of Colorado Denver
  121. *> \author NAG Ltd.
  122. *
  123. *> \date September 2012
  124. *
  125. *> \ingroup complexHEcomputational
  126. *
  127. * =====================================================================
  128. SUBROUTINE CHEGS2( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
  129. *
  130. * -- LAPACK computational routine (version 3.4.2) --
  131. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  132. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  133. * September 2012
  134. *
  135. * .. Scalar Arguments ..
  136. CHARACTER UPLO
  137. INTEGER INFO, ITYPE, LDA, LDB, N
  138. * ..
  139. * .. Array Arguments ..
  140. COMPLEX A( LDA, * ), B( LDB, * )
  141. * ..
  142. *
  143. * =====================================================================
  144. *
  145. * .. Parameters ..
  146. REAL ONE, HALF
  147. PARAMETER ( ONE = 1.0E+0, HALF = 0.5E+0 )
  148. COMPLEX CONE
  149. PARAMETER ( CONE = ( 1.0E+0, 0.0E+0 ) )
  150. * ..
  151. * .. Local Scalars ..
  152. LOGICAL UPPER
  153. INTEGER K
  154. REAL AKK, BKK
  155. COMPLEX CT
  156. * ..
  157. * .. External Subroutines ..
  158. EXTERNAL CAXPY, CHER2, CLACGV, CSSCAL, CTRMV, CTRSV,
  159. $ XERBLA
  160. * ..
  161. * .. Intrinsic Functions ..
  162. INTRINSIC MAX
  163. * ..
  164. * .. External Functions ..
  165. LOGICAL LSAME
  166. EXTERNAL LSAME
  167. * ..
  168. * .. Executable Statements ..
  169. *
  170. * Test the input parameters.
  171. *
  172. INFO = 0
  173. UPPER = LSAME( UPLO, 'U' )
  174. IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
  175. INFO = -1
  176. ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  177. INFO = -2
  178. ELSE IF( N.LT.0 ) THEN
  179. INFO = -3
  180. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  181. INFO = -5
  182. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  183. INFO = -7
  184. END IF
  185. IF( INFO.NE.0 ) THEN
  186. CALL XERBLA( 'CHEGS2', -INFO )
  187. RETURN
  188. END IF
  189. *
  190. IF( ITYPE.EQ.1 ) THEN
  191. IF( UPPER ) THEN
  192. *
  193. * Compute inv(U**H)*A*inv(U)
  194. *
  195. DO 10 K = 1, N
  196. *
  197. * Update the upper triangle of A(k:n,k:n)
  198. *
  199. AKK = A( K, K )
  200. BKK = B( K, K )
  201. AKK = AKK / BKK**2
  202. A( K, K ) = AKK
  203. IF( K.LT.N ) THEN
  204. CALL CSSCAL( N-K, ONE / BKK, A( K, K+1 ), LDA )
  205. CT = -HALF*AKK
  206. CALL CLACGV( N-K, A( K, K+1 ), LDA )
  207. CALL CLACGV( N-K, B( K, K+1 ), LDB )
  208. CALL CAXPY( N-K, CT, B( K, K+1 ), LDB, A( K, K+1 ),
  209. $ LDA )
  210. CALL CHER2( UPLO, N-K, -CONE, A( K, K+1 ), LDA,
  211. $ B( K, K+1 ), LDB, A( K+1, K+1 ), LDA )
  212. CALL CAXPY( N-K, CT, B( K, K+1 ), LDB, A( K, K+1 ),
  213. $ LDA )
  214. CALL CLACGV( N-K, B( K, K+1 ), LDB )
  215. CALL CTRSV( UPLO, 'Conjugate transpose', 'Non-unit',
  216. $ N-K, B( K+1, K+1 ), LDB, A( K, K+1 ),
  217. $ LDA )
  218. CALL CLACGV( N-K, A( K, K+1 ), LDA )
  219. END IF
  220. 10 CONTINUE
  221. ELSE
  222. *
  223. * Compute inv(L)*A*inv(L**H)
  224. *
  225. DO 20 K = 1, N
  226. *
  227. * Update the lower triangle of A(k:n,k:n)
  228. *
  229. AKK = A( K, K )
  230. BKK = B( K, K )
  231. AKK = AKK / BKK**2
  232. A( K, K ) = AKK
  233. IF( K.LT.N ) THEN
  234. CALL CSSCAL( N-K, ONE / BKK, A( K+1, K ), 1 )
  235. CT = -HALF*AKK
  236. CALL CAXPY( N-K, CT, B( K+1, K ), 1, A( K+1, K ), 1 )
  237. CALL CHER2( UPLO, N-K, -CONE, A( K+1, K ), 1,
  238. $ B( K+1, K ), 1, A( K+1, K+1 ), LDA )
  239. CALL CAXPY( N-K, CT, B( K+1, K ), 1, A( K+1, K ), 1 )
  240. CALL CTRSV( UPLO, 'No transpose', 'Non-unit', N-K,
  241. $ B( K+1, K+1 ), LDB, A( K+1, K ), 1 )
  242. END IF
  243. 20 CONTINUE
  244. END IF
  245. ELSE
  246. IF( UPPER ) THEN
  247. *
  248. * Compute U*A*U**H
  249. *
  250. DO 30 K = 1, N
  251. *
  252. * Update the upper triangle of A(1:k,1:k)
  253. *
  254. AKK = A( K, K )
  255. BKK = B( K, K )
  256. CALL CTRMV( UPLO, 'No transpose', 'Non-unit', K-1, B,
  257. $ LDB, A( 1, K ), 1 )
  258. CT = HALF*AKK
  259. CALL CAXPY( K-1, CT, B( 1, K ), 1, A( 1, K ), 1 )
  260. CALL CHER2( UPLO, K-1, CONE, A( 1, K ), 1, B( 1, K ), 1,
  261. $ A, LDA )
  262. CALL CAXPY( K-1, CT, B( 1, K ), 1, A( 1, K ), 1 )
  263. CALL CSSCAL( K-1, BKK, A( 1, K ), 1 )
  264. A( K, K ) = AKK*BKK**2
  265. 30 CONTINUE
  266. ELSE
  267. *
  268. * Compute L**H *A*L
  269. *
  270. DO 40 K = 1, N
  271. *
  272. * Update the lower triangle of A(1:k,1:k)
  273. *
  274. AKK = A( K, K )
  275. BKK = B( K, K )
  276. CALL CLACGV( K-1, A( K, 1 ), LDA )
  277. CALL CTRMV( UPLO, 'Conjugate transpose', 'Non-unit', K-1,
  278. $ B, LDB, A( K, 1 ), LDA )
  279. CT = HALF*AKK
  280. CALL CLACGV( K-1, B( K, 1 ), LDB )
  281. CALL CAXPY( K-1, CT, B( K, 1 ), LDB, A( K, 1 ), LDA )
  282. CALL CHER2( UPLO, K-1, CONE, A( K, 1 ), LDA, B( K, 1 ),
  283. $ LDB, A, LDA )
  284. CALL CAXPY( K-1, CT, B( K, 1 ), LDB, A( K, 1 ), LDA )
  285. CALL CLACGV( K-1, B( K, 1 ), LDB )
  286. CALL CSSCAL( K-1, BKK, A( K, 1 ), LDA )
  287. CALL CLACGV( K-1, A( K, 1 ), LDA )
  288. A( K, K ) = AKK*BKK**2
  289. 40 CONTINUE
  290. END IF
  291. END IF
  292. RETURN
  293. *
  294. * End of CHEGS2
  295. *
  296. END