You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ctplqt.f 7.4 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253
  1. * Definition:
  2. * ===========
  3. *
  4. * SUBROUTINE CTPLQT( M, N, L, MB, A, LDA, B, LDB, T, LDT, WORK,
  5. * INFO )
  6. *
  7. * .. Scalar Arguments ..
  8. * INTEGER INFO, LDA, LDB, LDT, N, M, L, MB
  9. * ..
  10. * .. Array Arguments ..
  11. * COMPLEX A( LDA, * ), B( LDB, * ), T( LDT, * ), WORK( * )
  12. * ..
  13. *
  14. *
  15. *> \par Purpose:
  16. * =============
  17. *>
  18. *> \verbatim
  19. *>
  20. *> CTPLQT computes a blocked LQ factorization of a complex
  21. *> "triangular-pentagonal" matrix C, which is composed of a
  22. *> triangular block A and pentagonal block B, using the compact
  23. *> WY representation for Q.
  24. *> \endverbatim
  25. *
  26. * Arguments:
  27. * ==========
  28. *
  29. *> \param[in] M
  30. *> \verbatim
  31. *> M is INTEGER
  32. *> The number of rows of the matrix B, and the order of the
  33. *> triangular matrix A.
  34. *> M >= 0.
  35. *> \endverbatim
  36. *>
  37. *> \param[in] N
  38. *> \verbatim
  39. *> N is INTEGER
  40. *> The number of columns of the matrix B.
  41. *> N >= 0.
  42. *> \endverbatim
  43. *>
  44. *> \param[in] L
  45. *> \verbatim
  46. *> L is INTEGER
  47. *> The number of rows of the lower trapezoidal part of B.
  48. *> MIN(M,N) >= L >= 0. See Further Details.
  49. *> \endverbatim
  50. *>
  51. *> \param[in] MB
  52. *> \verbatim
  53. *> MB is INTEGER
  54. *> The block size to be used in the blocked QR. M >= MB >= 1.
  55. *> \endverbatim
  56. *>
  57. *> \param[in,out] A
  58. *> \verbatim
  59. *> A is COMPLEX array, dimension (LDA,M)
  60. *> On entry, the lower triangular M-by-M matrix A.
  61. *> On exit, the elements on and below the diagonal of the array
  62. *> contain the lower triangular matrix L.
  63. *> \endverbatim
  64. *>
  65. *> \param[in] LDA
  66. *> \verbatim
  67. *> LDA is INTEGER
  68. *> The leading dimension of the array A. LDA >= max(1,M).
  69. *> \endverbatim
  70. *>
  71. *> \param[in,out] B
  72. *> \verbatim
  73. *> B is COMPLEX array, dimension (LDB,N)
  74. *> On entry, the pentagonal M-by-N matrix B. The first N-L columns
  75. *> are rectangular, and the last L columns are lower trapezoidal.
  76. *> On exit, B contains the pentagonal matrix V. See Further Details.
  77. *> \endverbatim
  78. *>
  79. *> \param[in] LDB
  80. *> \verbatim
  81. *> LDB is INTEGER
  82. *> The leading dimension of the array B. LDB >= max(1,M).
  83. *> \endverbatim
  84. *>
  85. *> \param[out] T
  86. *> \verbatim
  87. *> T is COMPLEX array, dimension (LDT,N)
  88. *> The lower triangular block reflectors stored in compact form
  89. *> as a sequence of upper triangular blocks. See Further Details.
  90. *> \endverbatim
  91. *>
  92. *> \param[in] LDT
  93. *> \verbatim
  94. *> LDT is INTEGER
  95. *> The leading dimension of the array T. LDT >= MB.
  96. *> \endverbatim
  97. *>
  98. *> \param[out] WORK
  99. *> \verbatim
  100. *> WORK is COMPLEX array, dimension (MB*M)
  101. *> \endverbatim
  102. *>
  103. *> \param[out] INFO
  104. *> \verbatim
  105. *> INFO is INTEGER
  106. *> = 0: successful exit
  107. *> < 0: if INFO = -i, the i-th argument had an illegal value
  108. *> \endverbatim
  109. *
  110. * Authors:
  111. * ========
  112. *
  113. *> \author Univ. of Tennessee
  114. *> \author Univ. of California Berkeley
  115. *> \author Univ. of Colorado Denver
  116. *> \author NAG Ltd.
  117. *
  118. *> \date June 2017
  119. *
  120. *> \ingroup doubleOTHERcomputational
  121. *
  122. *> \par Further Details:
  123. * =====================
  124. *>
  125. *> \verbatim
  126. *>
  127. *> The input matrix C is a M-by-(M+N) matrix
  128. *>
  129. *> C = [ A ] [ B ]
  130. *>
  131. *>
  132. *> where A is an lower triangular M-by-M matrix, and B is M-by-N pentagonal
  133. *> matrix consisting of a M-by-(N-L) rectangular matrix B1 on left of a M-by-L
  134. *> upper trapezoidal matrix B2:
  135. *> [ B ] = [ B1 ] [ B2 ]
  136. *> [ B1 ] <- M-by-(N-L) rectangular
  137. *> [ B2 ] <- M-by-L lower trapezoidal.
  138. *>
  139. *> The lower trapezoidal matrix B2 consists of the first L columns of a
  140. *> M-by-M lower triangular matrix, where 0 <= L <= MIN(M,N). If L=0,
  141. *> B is rectangular M-by-N; if M=L=N, B is lower triangular.
  142. *>
  143. *> The matrix W stores the elementary reflectors H(i) in the i-th row
  144. *> above the diagonal (of A) in the M-by-(M+N) input matrix C
  145. *> [ C ] = [ A ] [ B ]
  146. *> [ A ] <- lower triangular M-by-M
  147. *> [ B ] <- M-by-N pentagonal
  148. *>
  149. *> so that W can be represented as
  150. *> [ W ] = [ I ] [ V ]
  151. *> [ I ] <- identity, M-by-M
  152. *> [ V ] <- M-by-N, same form as B.
  153. *>
  154. *> Thus, all of information needed for W is contained on exit in B, which
  155. *> we call V above. Note that V has the same form as B; that is,
  156. *> [ V ] = [ V1 ] [ V2 ]
  157. *> [ V1 ] <- M-by-(N-L) rectangular
  158. *> [ V2 ] <- M-by-L lower trapezoidal.
  159. *>
  160. *> The rows of V represent the vectors which define the H(i)'s.
  161. *>
  162. *> The number of blocks is B = ceiling(M/MB), where each
  163. *> block is of order MB except for the last block, which is of order
  164. *> IB = M - (M-1)*MB. For each of the B blocks, a upper triangular block
  165. *> reflector factor is computed: T1, T2, ..., TB. The MB-by-MB (and IB-by-IB
  166. *> for the last block) T's are stored in the MB-by-N matrix T as
  167. *>
  168. *> T = [T1 T2 ... TB].
  169. *> \endverbatim
  170. *>
  171. * =====================================================================
  172. SUBROUTINE CTPLQT( M, N, L, MB, A, LDA, B, LDB, T, LDT, WORK,
  173. $ INFO )
  174. *
  175. * -- LAPACK computational routine (version 3.7.1) --
  176. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  177. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  178. * June 2017
  179. *
  180. * .. Scalar Arguments ..
  181. INTEGER INFO, LDA, LDB, LDT, N, M, L, MB
  182. * ..
  183. * .. Array Arguments ..
  184. COMPLEX A( LDA, * ), B( LDB, * ), T( LDT, * ), WORK( * )
  185. * ..
  186. *
  187. * =====================================================================
  188. *
  189. * ..
  190. * .. Local Scalars ..
  191. INTEGER I, IB, LB, NB, IINFO
  192. * ..
  193. * .. External Subroutines ..
  194. EXTERNAL CTPLQT2, CTPRFB, XERBLA
  195. * ..
  196. * .. Executable Statements ..
  197. *
  198. * Test the input arguments
  199. *
  200. INFO = 0
  201. IF( M.LT.0 ) THEN
  202. INFO = -1
  203. ELSE IF( N.LT.0 ) THEN
  204. INFO = -2
  205. ELSE IF( L.LT.0 .OR. (L.GT.MIN(M,N) .AND. MIN(M,N).GE.0)) THEN
  206. INFO = -3
  207. ELSE IF( MB.LT.1 .OR. (MB.GT.M .AND. M.GT.0)) THEN
  208. INFO = -4
  209. ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  210. INFO = -6
  211. ELSE IF( LDB.LT.MAX( 1, M ) ) THEN
  212. INFO = -8
  213. ELSE IF( LDT.LT.MB ) THEN
  214. INFO = -10
  215. END IF
  216. IF( INFO.NE.0 ) THEN
  217. CALL XERBLA( 'CTPLQT', -INFO )
  218. RETURN
  219. END IF
  220. *
  221. * Quick return if possible
  222. *
  223. IF( M.EQ.0 .OR. N.EQ.0 ) RETURN
  224. *
  225. DO I = 1, M, MB
  226. *
  227. * Compute the QR factorization of the current block
  228. *
  229. IB = MIN( M-I+1, MB )
  230. NB = MIN( N-L+I+IB-1, N )
  231. IF( I.GE.L ) THEN
  232. LB = 0
  233. ELSE
  234. LB = NB-N+L-I+1
  235. END IF
  236. *
  237. CALL CTPLQT2( IB, NB, LB, A(I,I), LDA, B( I, 1 ), LDB,
  238. $ T(1, I ), LDT, IINFO )
  239. *
  240. * Update by applying H**T to B(I+IB:M,:) from the right
  241. *
  242. IF( I+IB.LE.M ) THEN
  243. CALL CTPRFB( 'R', 'N', 'F', 'R', M-I-IB+1, NB, IB, LB,
  244. $ B( I, 1 ), LDB, T( 1, I ), LDT,
  245. $ A( I+IB, I ), LDA, B( I+IB, 1 ), LDB,
  246. $ WORK, M-I-IB+1)
  247. END IF
  248. END DO
  249. RETURN
  250. *
  251. * End of CTPLQT
  252. *
  253. END