|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241 |
- *> \brief \b CLARZ applies an elementary reflector (as returned by stzrzf) to a general matrix.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download CLARZ + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clarz.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clarz.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clarz.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CLARZ( SIDE, M, N, L, V, INCV, TAU, C, LDC, WORK )
- *
- * .. Scalar Arguments ..
- * CHARACTER SIDE
- * INTEGER INCV, L, LDC, M, N
- * COMPLEX TAU
- * ..
- * .. Array Arguments ..
- * COMPLEX C( LDC, * ), V( * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CLARZ applies a complex elementary reflector H to a complex
- *> M-by-N matrix C, from either the left or the right. H is represented
- *> in the form
- *>
- *> H = I - tau * v * v**H
- *>
- *> where tau is a complex scalar and v is a complex vector.
- *>
- *> If tau = 0, then H is taken to be the unit matrix.
- *>
- *> To apply H**H (the conjugate transpose of H), supply conjg(tau) instead
- *> tau.
- *>
- *> H is a product of k elementary reflectors as returned by CTZRZF.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] SIDE
- *> \verbatim
- *> SIDE is CHARACTER*1
- *> = 'L': form H * C
- *> = 'R': form C * H
- *> \endverbatim
- *>
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows of the matrix C.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns of the matrix C.
- *> \endverbatim
- *>
- *> \param[in] L
- *> \verbatim
- *> L is INTEGER
- *> The number of entries of the vector V containing
- *> the meaningful part of the Householder vectors.
- *> If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.
- *> \endverbatim
- *>
- *> \param[in] V
- *> \verbatim
- *> V is COMPLEX array, dimension (1+(L-1)*abs(INCV))
- *> The vector v in the representation of H as returned by
- *> CTZRZF. V is not used if TAU = 0.
- *> \endverbatim
- *>
- *> \param[in] INCV
- *> \verbatim
- *> INCV is INTEGER
- *> The increment between elements of v. INCV <> 0.
- *> \endverbatim
- *>
- *> \param[in] TAU
- *> \verbatim
- *> TAU is COMPLEX
- *> The value tau in the representation of H.
- *> \endverbatim
- *>
- *> \param[in,out] C
- *> \verbatim
- *> C is COMPLEX array, dimension (LDC,N)
- *> On entry, the M-by-N matrix C.
- *> On exit, C is overwritten by the matrix H * C if SIDE = 'L',
- *> or C * H if SIDE = 'R'.
- *> \endverbatim
- *>
- *> \param[in] LDC
- *> \verbatim
- *> LDC is INTEGER
- *> The leading dimension of the array C. LDC >= max(1,M).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX array, dimension
- *> (N) if SIDE = 'L'
- *> or (M) if SIDE = 'R'
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup complexOTHERcomputational
- *
- *> \par Contributors:
- * ==================
- *>
- *> A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *> \endverbatim
- *>
- * =====================================================================
- SUBROUTINE CLARZ( SIDE, M, N, L, V, INCV, TAU, C, LDC, WORK )
- *
- * -- LAPACK computational routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- CHARACTER SIDE
- INTEGER INCV, L, LDC, M, N
- COMPLEX TAU
- * ..
- * .. Array Arguments ..
- COMPLEX C( LDC, * ), V( * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- COMPLEX ONE, ZERO
- PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ),
- $ ZERO = ( 0.0E+0, 0.0E+0 ) )
- * ..
- * .. External Subroutines ..
- EXTERNAL CAXPY, CCOPY, CGEMV, CGERC, CGERU, CLACGV
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * ..
- * .. Executable Statements ..
- *
- IF( LSAME( SIDE, 'L' ) ) THEN
- *
- * Form H * C
- *
- IF( TAU.NE.ZERO ) THEN
- *
- * w( 1:n ) = conjg( C( 1, 1:n ) )
- *
- CALL CCOPY( N, C, LDC, WORK, 1 )
- CALL CLACGV( N, WORK, 1 )
- *
- * w( 1:n ) = conjg( w( 1:n ) + C( m-l+1:m, 1:n )**H * v( 1:l ) )
- *
- CALL CGEMV( 'Conjugate transpose', L, N, ONE, C( M-L+1, 1 ),
- $ LDC, V, INCV, ONE, WORK, 1 )
- CALL CLACGV( N, WORK, 1 )
- *
- * C( 1, 1:n ) = C( 1, 1:n ) - tau * w( 1:n )
- *
- CALL CAXPY( N, -TAU, WORK, 1, C, LDC )
- *
- * C( m-l+1:m, 1:n ) = C( m-l+1:m, 1:n ) - ...
- * tau * v( 1:l ) * w( 1:n )**H
- *
- CALL CGERU( L, N, -TAU, V, INCV, WORK, 1, C( M-L+1, 1 ),
- $ LDC )
- END IF
- *
- ELSE
- *
- * Form C * H
- *
- IF( TAU.NE.ZERO ) THEN
- *
- * w( 1:m ) = C( 1:m, 1 )
- *
- CALL CCOPY( M, C, 1, WORK, 1 )
- *
- * w( 1:m ) = w( 1:m ) + C( 1:m, n-l+1:n, 1:n ) * v( 1:l )
- *
- CALL CGEMV( 'No transpose', M, L, ONE, C( 1, N-L+1 ), LDC,
- $ V, INCV, ONE, WORK, 1 )
- *
- * C( 1:m, 1 ) = C( 1:m, 1 ) - tau * w( 1:m )
- *
- CALL CAXPY( M, -TAU, WORK, 1, C, 1 )
- *
- * C( 1:m, n-l+1:n ) = C( 1:m, n-l+1:n ) - ...
- * tau * w( 1:m ) * v( 1:l )**H
- *
- CALL CGERC( M, L, -TAU, WORK, 1, V, INCV, C( 1, N-L+1 ),
- $ LDC )
- *
- END IF
- *
- END IF
- *
- RETURN
- *
- * End of CLARZ
- *
- END
|