|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841 |
- *> \brief \b DDRVGB
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DDRVGB( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, A, LA,
- * AFB, LAFB, ASAV, B, BSAV, X, XACT, S, WORK,
- * RWORK, IWORK, NOUT )
- *
- * .. Scalar Arguments ..
- * LOGICAL TSTERR
- * INTEGER LA, LAFB, NN, NOUT, NRHS
- * DOUBLE PRECISION THRESH
- * ..
- * .. Array Arguments ..
- * LOGICAL DOTYPE( * )
- * INTEGER IWORK( * ), NVAL( * )
- * DOUBLE PRECISION A( * ), AFB( * ), ASAV( * ), B( * ), BSAV( * ),
- * $ RWORK( * ), S( * ), WORK( * ), X( * ),
- * $ XACT( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DDRVGB tests the driver routines DGBSV and -SVX.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] DOTYPE
- *> \verbatim
- *> DOTYPE is LOGICAL array, dimension (NTYPES)
- *> The matrix types to be used for testing. Matrices of type j
- *> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
- *> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
- *> \endverbatim
- *>
- *> \param[in] NN
- *> \verbatim
- *> NN is INTEGER
- *> The number of values of N contained in the vector NVAL.
- *> \endverbatim
- *>
- *> \param[in] NVAL
- *> \verbatim
- *> NVAL is INTEGER array, dimension (NN)
- *> The values of the matrix column dimension N.
- *> \endverbatim
- *>
- *> \param[in] NRHS
- *> \verbatim
- *> NRHS is INTEGER
- *> The number of right hand side vectors to be generated for
- *> each linear system.
- *> \endverbatim
- *>
- *> \param[in] THRESH
- *> \verbatim
- *> THRESH is DOUBLE PRECISION
- *> The threshold value for the test ratios. A result is
- *> included in the output file if RESULT >= THRESH. To have
- *> every test ratio printed, use THRESH = 0.
- *> \endverbatim
- *>
- *> \param[in] TSTERR
- *> \verbatim
- *> TSTERR is LOGICAL
- *> Flag that indicates whether error exits are to be tested.
- *> \endverbatim
- *>
- *> \param[out] A
- *> \verbatim
- *> A is DOUBLE PRECISION array, dimension (LA)
- *> \endverbatim
- *>
- *> \param[in] LA
- *> \verbatim
- *> LA is INTEGER
- *> The length of the array A. LA >= (2*NMAX-1)*NMAX
- *> where NMAX is the largest entry in NVAL.
- *> \endverbatim
- *>
- *> \param[out] AFB
- *> \verbatim
- *> AFB is DOUBLE PRECISION array, dimension (LAFB)
- *> \endverbatim
- *>
- *> \param[in] LAFB
- *> \verbatim
- *> LAFB is INTEGER
- *> The length of the array AFB. LAFB >= (3*NMAX-2)*NMAX
- *> where NMAX is the largest entry in NVAL.
- *> \endverbatim
- *>
- *> \param[out] ASAV
- *> \verbatim
- *> ASAV is DOUBLE PRECISION array, dimension (LA)
- *> \endverbatim
- *>
- *> \param[out] B
- *> \verbatim
- *> B is DOUBLE PRECISION array, dimension (NMAX*NRHS)
- *> \endverbatim
- *>
- *> \param[out] BSAV
- *> \verbatim
- *> BSAV is DOUBLE PRECISION array, dimension (NMAX*NRHS)
- *> \endverbatim
- *>
- *> \param[out] X
- *> \verbatim
- *> X is DOUBLE PRECISION array, dimension (NMAX*NRHS)
- *> \endverbatim
- *>
- *> \param[out] XACT
- *> \verbatim
- *> XACT is DOUBLE PRECISION array, dimension (NMAX*NRHS)
- *> \endverbatim
- *>
- *> \param[out] S
- *> \verbatim
- *> S is DOUBLE PRECISION array, dimension (2*NMAX)
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is DOUBLE PRECISION array, dimension
- *> (NMAX*max(3,NRHS,NMAX))
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is DOUBLE PRECISION array, dimension
- *> (max(NMAX,2*NRHS))
- *> \endverbatim
- *>
- *> \param[out] IWORK
- *> \verbatim
- *> IWORK is INTEGER array, dimension (2*NMAX)
- *> \endverbatim
- *>
- *> \param[in] NOUT
- *> \verbatim
- *> NOUT is INTEGER
- *> The unit number for output.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date November 2011
- *
- *> \ingroup double_lin
- *
- * =====================================================================
- SUBROUTINE DDRVGB( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, A, LA,
- $ AFB, LAFB, ASAV, B, BSAV, X, XACT, S, WORK,
- $ RWORK, IWORK, NOUT )
- *
- * -- LAPACK test routine (version 3.4.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * November 2011
- *
- * .. Scalar Arguments ..
- LOGICAL TSTERR
- INTEGER LA, LAFB, NN, NOUT, NRHS
- DOUBLE PRECISION THRESH
- * ..
- * .. Array Arguments ..
- LOGICAL DOTYPE( * )
- INTEGER IWORK( * ), NVAL( * )
- DOUBLE PRECISION A( * ), AFB( * ), ASAV( * ), B( * ), BSAV( * ),
- $ RWORK( * ), S( * ), WORK( * ), X( * ),
- $ XACT( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ONE, ZERO
- PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
- INTEGER NTYPES
- PARAMETER ( NTYPES = 8 )
- INTEGER NTESTS
- PARAMETER ( NTESTS = 7 )
- INTEGER NTRAN
- PARAMETER ( NTRAN = 3 )
- * ..
- * .. Local Scalars ..
- LOGICAL EQUIL, NOFACT, PREFAC, TRFCON, ZEROT
- CHARACTER DIST, EQUED, FACT, TRANS, TYPE, XTYPE
- CHARACTER*3 PATH
- INTEGER I, I1, I2, IEQUED, IFACT, IKL, IKU, IMAT, IN,
- $ INFO, IOFF, ITRAN, IZERO, J, K, K1, KL, KU,
- $ LDA, LDAFB, LDB, MODE, N, NB, NBMIN, NERRS,
- $ NFACT, NFAIL, NIMAT, NKL, NKU, NRUN, NT
- DOUBLE PRECISION AINVNM, AMAX, ANORM, ANORMI, ANORMO, ANRMPV,
- $ CNDNUM, COLCND, RCOND, RCONDC, RCONDI, RCONDO,
- $ ROLDC, ROLDI, ROLDO, ROWCND, RPVGRW
- * ..
- * .. Local Arrays ..
- CHARACTER EQUEDS( 4 ), FACTS( 3 ), TRANSS( NTRAN )
- INTEGER ISEED( 4 ), ISEEDY( 4 )
- DOUBLE PRECISION RESULT( NTESTS )
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- DOUBLE PRECISION DGET06, DLAMCH, DLANGB, DLANGE, DLANTB
- EXTERNAL LSAME, DGET06, DLAMCH, DLANGB, DLANGE, DLANTB
- * ..
- * .. External Subroutines ..
- EXTERNAL ALADHD, ALAERH, ALASVM, DERRVX, DGBEQU, DGBSV,
- $ DGBSVX, DGBT01, DGBT02, DGBT05, DGBTRF, DGBTRS,
- $ DGET04, DLACPY, DLAQGB, DLARHS, DLASET, DLATB4,
- $ DLATMS, XLAENV
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, MAX, MIN
- * ..
- * .. Scalars in Common ..
- LOGICAL LERR, OK
- CHARACTER*32 SRNAMT
- INTEGER INFOT, NUNIT
- * ..
- * .. Common blocks ..
- COMMON / INFOC / INFOT, NUNIT, OK, LERR
- COMMON / SRNAMC / SRNAMT
- * ..
- * .. Data statements ..
- DATA ISEEDY / 1988, 1989, 1990, 1991 /
- DATA TRANSS / 'N', 'T', 'C' /
- DATA FACTS / 'F', 'N', 'E' /
- DATA EQUEDS / 'N', 'R', 'C', 'B' /
- * ..
- * .. Executable Statements ..
- *
- * Initialize constants and the random number seed.
- *
- PATH( 1: 1 ) = 'Double precision'
- PATH( 2: 3 ) = 'GB'
- NRUN = 0
- NFAIL = 0
- NERRS = 0
- DO 10 I = 1, 4
- ISEED( I ) = ISEEDY( I )
- 10 CONTINUE
- *
- * Test the error exits
- *
- IF( TSTERR )
- $ CALL DERRVX( PATH, NOUT )
- INFOT = 0
- *
- * Set the block size and minimum block size for testing.
- *
- NB = 1
- NBMIN = 2
- CALL XLAENV( 1, NB )
- CALL XLAENV( 2, NBMIN )
- *
- * Do for each value of N in NVAL
- *
- DO 150 IN = 1, NN
- N = NVAL( IN )
- LDB = MAX( N, 1 )
- XTYPE = 'N'
- *
- * Set limits on the number of loop iterations.
- *
- NKL = MAX( 1, MIN( N, 4 ) )
- IF( N.EQ.0 )
- $ NKL = 1
- NKU = NKL
- NIMAT = NTYPES
- IF( N.LE.0 )
- $ NIMAT = 1
- *
- DO 140 IKL = 1, NKL
- *
- * Do for KL = 0, N-1, (3N-1)/4, and (N+1)/4. This order makes
- * it easier to skip redundant values for small values of N.
- *
- IF( IKL.EQ.1 ) THEN
- KL = 0
- ELSE IF( IKL.EQ.2 ) THEN
- KL = MAX( N-1, 0 )
- ELSE IF( IKL.EQ.3 ) THEN
- KL = ( 3*N-1 ) / 4
- ELSE IF( IKL.EQ.4 ) THEN
- KL = ( N+1 ) / 4
- END IF
- DO 130 IKU = 1, NKU
- *
- * Do for KU = 0, N-1, (3N-1)/4, and (N+1)/4. This order
- * makes it easier to skip redundant values for small
- * values of N.
- *
- IF( IKU.EQ.1 ) THEN
- KU = 0
- ELSE IF( IKU.EQ.2 ) THEN
- KU = MAX( N-1, 0 )
- ELSE IF( IKU.EQ.3 ) THEN
- KU = ( 3*N-1 ) / 4
- ELSE IF( IKU.EQ.4 ) THEN
- KU = ( N+1 ) / 4
- END IF
- *
- * Check that A and AFB are big enough to generate this
- * matrix.
- *
- LDA = KL + KU + 1
- LDAFB = 2*KL + KU + 1
- IF( LDA*N.GT.LA .OR. LDAFB*N.GT.LAFB ) THEN
- IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
- $ CALL ALADHD( NOUT, PATH )
- IF( LDA*N.GT.LA ) THEN
- WRITE( NOUT, FMT = 9999 )LA, N, KL, KU,
- $ N*( KL+KU+1 )
- NERRS = NERRS + 1
- END IF
- IF( LDAFB*N.GT.LAFB ) THEN
- WRITE( NOUT, FMT = 9998 )LAFB, N, KL, KU,
- $ N*( 2*KL+KU+1 )
- NERRS = NERRS + 1
- END IF
- GO TO 130
- END IF
- *
- DO 120 IMAT = 1, NIMAT
- *
- * Do the tests only if DOTYPE( IMAT ) is true.
- *
- IF( .NOT.DOTYPE( IMAT ) )
- $ GO TO 120
- *
- * Skip types 2, 3, or 4 if the matrix is too small.
- *
- ZEROT = IMAT.GE.2 .AND. IMAT.LE.4
- IF( ZEROT .AND. N.LT.IMAT-1 )
- $ GO TO 120
- *
- * Set up parameters with DLATB4 and generate a
- * test matrix with DLATMS.
- *
- CALL DLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM,
- $ MODE, CNDNUM, DIST )
- RCONDC = ONE / CNDNUM
- *
- SRNAMT = 'DLATMS'
- CALL DLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE,
- $ CNDNUM, ANORM, KL, KU, 'Z', A, LDA, WORK,
- $ INFO )
- *
- * Check the error code from DLATMS.
- *
- IF( INFO.NE.0 ) THEN
- CALL ALAERH( PATH, 'DLATMS', INFO, 0, ' ', N, N,
- $ KL, KU, -1, IMAT, NFAIL, NERRS, NOUT )
- GO TO 120
- END IF
- *
- * For types 2, 3, and 4, zero one or more columns of
- * the matrix to test that INFO is returned correctly.
- *
- IZERO = 0
- IF( ZEROT ) THEN
- IF( IMAT.EQ.2 ) THEN
- IZERO = 1
- ELSE IF( IMAT.EQ.3 ) THEN
- IZERO = N
- ELSE
- IZERO = N / 2 + 1
- END IF
- IOFF = ( IZERO-1 )*LDA
- IF( IMAT.LT.4 ) THEN
- I1 = MAX( 1, KU+2-IZERO )
- I2 = MIN( KL+KU+1, KU+1+( N-IZERO ) )
- DO 20 I = I1, I2
- A( IOFF+I ) = ZERO
- 20 CONTINUE
- ELSE
- DO 40 J = IZERO, N
- DO 30 I = MAX( 1, KU+2-J ),
- $ MIN( KL+KU+1, KU+1+( N-J ) )
- A( IOFF+I ) = ZERO
- 30 CONTINUE
- IOFF = IOFF + LDA
- 40 CONTINUE
- END IF
- END IF
- *
- * Save a copy of the matrix A in ASAV.
- *
- CALL DLACPY( 'Full', KL+KU+1, N, A, LDA, ASAV, LDA )
- *
- DO 110 IEQUED = 1, 4
- EQUED = EQUEDS( IEQUED )
- IF( IEQUED.EQ.1 ) THEN
- NFACT = 3
- ELSE
- NFACT = 1
- END IF
- *
- DO 100 IFACT = 1, NFACT
- FACT = FACTS( IFACT )
- PREFAC = LSAME( FACT, 'F' )
- NOFACT = LSAME( FACT, 'N' )
- EQUIL = LSAME( FACT, 'E' )
- *
- IF( ZEROT ) THEN
- IF( PREFAC )
- $ GO TO 100
- RCONDO = ZERO
- RCONDI = ZERO
- *
- ELSE IF( .NOT.NOFACT ) THEN
- *
- * Compute the condition number for comparison
- * with the value returned by DGESVX (FACT =
- * 'N' reuses the condition number from the
- * previous iteration with FACT = 'F').
- *
- CALL DLACPY( 'Full', KL+KU+1, N, ASAV, LDA,
- $ AFB( KL+1 ), LDAFB )
- IF( EQUIL .OR. IEQUED.GT.1 ) THEN
- *
- * Compute row and column scale factors to
- * equilibrate the matrix A.
- *
- CALL DGBEQU( N, N, KL, KU, AFB( KL+1 ),
- $ LDAFB, S, S( N+1 ), ROWCND,
- $ COLCND, AMAX, INFO )
- IF( INFO.EQ.0 .AND. N.GT.0 ) THEN
- IF( LSAME( EQUED, 'R' ) ) THEN
- ROWCND = ZERO
- COLCND = ONE
- ELSE IF( LSAME( EQUED, 'C' ) ) THEN
- ROWCND = ONE
- COLCND = ZERO
- ELSE IF( LSAME( EQUED, 'B' ) ) THEN
- ROWCND = ZERO
- COLCND = ZERO
- END IF
- *
- * Equilibrate the matrix.
- *
- CALL DLAQGB( N, N, KL, KU, AFB( KL+1 ),
- $ LDAFB, S, S( N+1 ),
- $ ROWCND, COLCND, AMAX,
- $ EQUED )
- END IF
- END IF
- *
- * Save the condition number of the
- * non-equilibrated system for use in DGET04.
- *
- IF( EQUIL ) THEN
- ROLDO = RCONDO
- ROLDI = RCONDI
- END IF
- *
- * Compute the 1-norm and infinity-norm of A.
- *
- ANORMO = DLANGB( '1', N, KL, KU, AFB( KL+1 ),
- $ LDAFB, RWORK )
- ANORMI = DLANGB( 'I', N, KL, KU, AFB( KL+1 ),
- $ LDAFB, RWORK )
- *
- * Factor the matrix A.
- *
- CALL DGBTRF( N, N, KL, KU, AFB, LDAFB, IWORK,
- $ INFO )
- *
- * Form the inverse of A.
- *
- CALL DLASET( 'Full', N, N, ZERO, ONE, WORK,
- $ LDB )
- SRNAMT = 'DGBTRS'
- CALL DGBTRS( 'No transpose', N, KL, KU, N,
- $ AFB, LDAFB, IWORK, WORK, LDB,
- $ INFO )
- *
- * Compute the 1-norm condition number of A.
- *
- AINVNM = DLANGE( '1', N, N, WORK, LDB,
- $ RWORK )
- IF( ANORMO.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
- RCONDO = ONE
- ELSE
- RCONDO = ( ONE / ANORMO ) / AINVNM
- END IF
- *
- * Compute the infinity-norm condition number
- * of A.
- *
- AINVNM = DLANGE( 'I', N, N, WORK, LDB,
- $ RWORK )
- IF( ANORMI.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
- RCONDI = ONE
- ELSE
- RCONDI = ( ONE / ANORMI ) / AINVNM
- END IF
- END IF
- *
- DO 90 ITRAN = 1, NTRAN
- *
- * Do for each value of TRANS.
- *
- TRANS = TRANSS( ITRAN )
- IF( ITRAN.EQ.1 ) THEN
- RCONDC = RCONDO
- ELSE
- RCONDC = RCONDI
- END IF
- *
- * Restore the matrix A.
- *
- CALL DLACPY( 'Full', KL+KU+1, N, ASAV, LDA,
- $ A, LDA )
- *
- * Form an exact solution and set the right hand
- * side.
- *
- SRNAMT = 'DLARHS'
- CALL DLARHS( PATH, XTYPE, 'Full', TRANS, N,
- $ N, KL, KU, NRHS, A, LDA, XACT,
- $ LDB, B, LDB, ISEED, INFO )
- XTYPE = 'C'
- CALL DLACPY( 'Full', N, NRHS, B, LDB, BSAV,
- $ LDB )
- *
- IF( NOFACT .AND. ITRAN.EQ.1 ) THEN
- *
- * --- Test DGBSV ---
- *
- * Compute the LU factorization of the matrix
- * and solve the system.
- *
- CALL DLACPY( 'Full', KL+KU+1, N, A, LDA,
- $ AFB( KL+1 ), LDAFB )
- CALL DLACPY( 'Full', N, NRHS, B, LDB, X,
- $ LDB )
- *
- SRNAMT = 'DGBSV '
- CALL DGBSV( N, KL, KU, NRHS, AFB, LDAFB,
- $ IWORK, X, LDB, INFO )
- *
- * Check error code from DGBSV .
- *
- IF( INFO.NE.IZERO )
- $ CALL ALAERH( PATH, 'DGBSV ', INFO,
- $ IZERO, ' ', N, N, KL, KU,
- $ NRHS, IMAT, NFAIL, NERRS,
- $ NOUT )
- *
- * Reconstruct matrix from factors and
- * compute residual.
- *
- CALL DGBT01( N, N, KL, KU, A, LDA, AFB,
- $ LDAFB, IWORK, WORK,
- $ RESULT( 1 ) )
- NT = 1
- IF( IZERO.EQ.0 ) THEN
- *
- * Compute residual of the computed
- * solution.
- *
- CALL DLACPY( 'Full', N, NRHS, B, LDB,
- $ WORK, LDB )
- CALL DGBT02( 'No transpose', N, N, KL,
- $ KU, NRHS, A, LDA, X, LDB,
- $ WORK, LDB, RESULT( 2 ) )
- *
- * Check solution from generated exact
- * solution.
- *
- CALL DGET04( N, NRHS, X, LDB, XACT,
- $ LDB, RCONDC, RESULT( 3 ) )
- NT = 3
- END IF
- *
- * Print information about the tests that did
- * not pass the threshold.
- *
- DO 50 K = 1, NT
- IF( RESULT( K ).GE.THRESH ) THEN
- IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
- $ CALL ALADHD( NOUT, PATH )
- WRITE( NOUT, FMT = 9997 )'DGBSV ',
- $ N, KL, KU, IMAT, K, RESULT( K )
- NFAIL = NFAIL + 1
- END IF
- 50 CONTINUE
- NRUN = NRUN + NT
- END IF
- *
- * --- Test DGBSVX ---
- *
- IF( .NOT.PREFAC )
- $ CALL DLASET( 'Full', 2*KL+KU+1, N, ZERO,
- $ ZERO, AFB, LDAFB )
- CALL DLASET( 'Full', N, NRHS, ZERO, ZERO, X,
- $ LDB )
- IF( IEQUED.GT.1 .AND. N.GT.0 ) THEN
- *
- * Equilibrate the matrix if FACT = 'F' and
- * EQUED = 'R', 'C', or 'B'.
- *
- CALL DLAQGB( N, N, KL, KU, A, LDA, S,
- $ S( N+1 ), ROWCND, COLCND,
- $ AMAX, EQUED )
- END IF
- *
- * Solve the system and compute the condition
- * number and error bounds using DGBSVX.
- *
- SRNAMT = 'DGBSVX'
- CALL DGBSVX( FACT, TRANS, N, KL, KU, NRHS, A,
- $ LDA, AFB, LDAFB, IWORK, EQUED,
- $ S, S( N+1 ), B, LDB, X, LDB,
- $ RCOND, RWORK, RWORK( NRHS+1 ),
- $ WORK, IWORK( N+1 ), INFO )
- *
- * Check the error code from DGBSVX.
- *
- IF( INFO.NE.IZERO )
- $ CALL ALAERH( PATH, 'DGBSVX', INFO, IZERO,
- $ FACT // TRANS, N, N, KL, KU,
- $ NRHS, IMAT, NFAIL, NERRS,
- $ NOUT )
- *
- * Compare WORK(1) from DGBSVX with the computed
- * reciprocal pivot growth factor RPVGRW
- *
- IF( INFO.NE.0 .AND. INFO.LE.N) THEN
- ANRMPV = ZERO
- DO 70 J = 1, INFO
- DO 60 I = MAX( KU+2-J, 1 ),
- $ MIN( N+KU+1-J, KL+KU+1 )
- ANRMPV = MAX( ANRMPV,
- $ ABS( A( I+( J-1 )*LDA ) ) )
- 60 CONTINUE
- 70 CONTINUE
- RPVGRW = DLANTB( 'M', 'U', 'N', INFO,
- $ MIN( INFO-1, KL+KU ),
- $ AFB( MAX( 1, KL+KU+2-INFO ) ),
- $ LDAFB, WORK )
- IF( RPVGRW.EQ.ZERO ) THEN
- RPVGRW = ONE
- ELSE
- RPVGRW = ANRMPV / RPVGRW
- END IF
- ELSE
- RPVGRW = DLANTB( 'M', 'U', 'N', N, KL+KU,
- $ AFB, LDAFB, WORK )
- IF( RPVGRW.EQ.ZERO ) THEN
- RPVGRW = ONE
- ELSE
- RPVGRW = DLANGB( 'M', N, KL, KU, A,
- $ LDA, WORK ) / RPVGRW
- END IF
- END IF
- RESULT( 7 ) = ABS( RPVGRW-WORK( 1 ) ) /
- $ MAX( WORK( 1 ), RPVGRW ) /
- $ DLAMCH( 'E' )
- *
- IF( .NOT.PREFAC ) THEN
- *
- * Reconstruct matrix from factors and
- * compute residual.
- *
- CALL DGBT01( N, N, KL, KU, A, LDA, AFB,
- $ LDAFB, IWORK, WORK,
- $ RESULT( 1 ) )
- K1 = 1
- ELSE
- K1 = 2
- END IF
- *
- IF( INFO.EQ.0 ) THEN
- TRFCON = .FALSE.
- *
- * Compute residual of the computed solution.
- *
- CALL DLACPY( 'Full', N, NRHS, BSAV, LDB,
- $ WORK, LDB )
- CALL DGBT02( TRANS, N, N, KL, KU, NRHS,
- $ ASAV, LDA, X, LDB, WORK, LDB,
- $ RESULT( 2 ) )
- *
- * Check solution from generated exact
- * solution.
- *
- IF( NOFACT .OR. ( PREFAC .AND.
- $ LSAME( EQUED, 'N' ) ) ) THEN
- CALL DGET04( N, NRHS, X, LDB, XACT,
- $ LDB, RCONDC, RESULT( 3 ) )
- ELSE
- IF( ITRAN.EQ.1 ) THEN
- ROLDC = ROLDO
- ELSE
- ROLDC = ROLDI
- END IF
- CALL DGET04( N, NRHS, X, LDB, XACT,
- $ LDB, ROLDC, RESULT( 3 ) )
- END IF
- *
- * Check the error bounds from iterative
- * refinement.
- *
- CALL DGBT05( TRANS, N, KL, KU, NRHS, ASAV,
- $ LDA, B, LDB, X, LDB, XACT,
- $ LDB, RWORK, RWORK( NRHS+1 ),
- $ RESULT( 4 ) )
- ELSE
- TRFCON = .TRUE.
- END IF
- *
- * Compare RCOND from DGBSVX with the computed
- * value in RCONDC.
- *
- RESULT( 6 ) = DGET06( RCOND, RCONDC )
- *
- * Print information about the tests that did
- * not pass the threshold.
- *
- IF( .NOT.TRFCON ) THEN
- DO 80 K = K1, NTESTS
- IF( RESULT( K ).GE.THRESH ) THEN
- IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
- $ CALL ALADHD( NOUT, PATH )
- IF( PREFAC ) THEN
- WRITE( NOUT, FMT = 9995 )
- $ 'DGBSVX', FACT, TRANS, N, KL,
- $ KU, EQUED, IMAT, K,
- $ RESULT( K )
- ELSE
- WRITE( NOUT, FMT = 9996 )
- $ 'DGBSVX', FACT, TRANS, N, KL,
- $ KU, IMAT, K, RESULT( K )
- END IF
- NFAIL = NFAIL + 1
- END IF
- 80 CONTINUE
- NRUN = NRUN + 7 - K1
- ELSE
- IF( RESULT( 1 ).GE.THRESH .AND. .NOT.
- $ PREFAC ) THEN
- IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
- $ CALL ALADHD( NOUT, PATH )
- IF( PREFAC ) THEN
- WRITE( NOUT, FMT = 9995 )'DGBSVX',
- $ FACT, TRANS, N, KL, KU, EQUED,
- $ IMAT, 1, RESULT( 1 )
- ELSE
- WRITE( NOUT, FMT = 9996 )'DGBSVX',
- $ FACT, TRANS, N, KL, KU, IMAT, 1,
- $ RESULT( 1 )
- END IF
- NFAIL = NFAIL + 1
- NRUN = NRUN + 1
- END IF
- IF( RESULT( 6 ).GE.THRESH ) THEN
- IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
- $ CALL ALADHD( NOUT, PATH )
- IF( PREFAC ) THEN
- WRITE( NOUT, FMT = 9995 )'DGBSVX',
- $ FACT, TRANS, N, KL, KU, EQUED,
- $ IMAT, 6, RESULT( 6 )
- ELSE
- WRITE( NOUT, FMT = 9996 )'DGBSVX',
- $ FACT, TRANS, N, KL, KU, IMAT, 6,
- $ RESULT( 6 )
- END IF
- NFAIL = NFAIL + 1
- NRUN = NRUN + 1
- END IF
- IF( RESULT( 7 ).GE.THRESH ) THEN
- IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
- $ CALL ALADHD( NOUT, PATH )
- IF( PREFAC ) THEN
- WRITE( NOUT, FMT = 9995 )'DGBSVX',
- $ FACT, TRANS, N, KL, KU, EQUED,
- $ IMAT, 7, RESULT( 7 )
- ELSE
- WRITE( NOUT, FMT = 9996 )'DGBSVX',
- $ FACT, TRANS, N, KL, KU, IMAT, 7,
- $ RESULT( 7 )
- END IF
- NFAIL = NFAIL + 1
- NRUN = NRUN + 1
- END IF
- *
- END IF
- 90 CONTINUE
- 100 CONTINUE
- 110 CONTINUE
- 120 CONTINUE
- 130 CONTINUE
- 140 CONTINUE
- 150 CONTINUE
- *
- * Print a summary of the results.
- *
- CALL ALASVM( PATH, NOUT, NFAIL, NRUN, NERRS )
- *
- 9999 FORMAT( ' *** In DDRVGB, LA=', I5, ' is too small for N=', I5,
- $ ', KU=', I5, ', KL=', I5, / ' ==> Increase LA to at least ',
- $ I5 )
- 9998 FORMAT( ' *** In DDRVGB, LAFB=', I5, ' is too small for N=', I5,
- $ ', KU=', I5, ', KL=', I5, /
- $ ' ==> Increase LAFB to at least ', I5 )
- 9997 FORMAT( 1X, A, ', N=', I5, ', KL=', I5, ', KU=', I5, ', type ',
- $ I1, ', test(', I1, ')=', G12.5 )
- 9996 FORMAT( 1X, A, '( ''', A1, ''',''', A1, ''',', I5, ',', I5, ',',
- $ I5, ',...), type ', I1, ', test(', I1, ')=', G12.5 )
- 9995 FORMAT( 1X, A, '( ''', A1, ''',''', A1, ''',', I5, ',', I5, ',',
- $ I5, ',...), EQUED=''', A1, ''', type ', I1, ', test(', I1,
- $ ')=', G12.5 )
- *
- RETURN
- *
- * End of DDRVGB
- *
- END
|