You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ddrvgb.f 32 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841
  1. *> \brief \b DDRVGB
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE DDRVGB( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, A, LA,
  12. * AFB, LAFB, ASAV, B, BSAV, X, XACT, S, WORK,
  13. * RWORK, IWORK, NOUT )
  14. *
  15. * .. Scalar Arguments ..
  16. * LOGICAL TSTERR
  17. * INTEGER LA, LAFB, NN, NOUT, NRHS
  18. * DOUBLE PRECISION THRESH
  19. * ..
  20. * .. Array Arguments ..
  21. * LOGICAL DOTYPE( * )
  22. * INTEGER IWORK( * ), NVAL( * )
  23. * DOUBLE PRECISION A( * ), AFB( * ), ASAV( * ), B( * ), BSAV( * ),
  24. * $ RWORK( * ), S( * ), WORK( * ), X( * ),
  25. * $ XACT( * )
  26. * ..
  27. *
  28. *
  29. *> \par Purpose:
  30. * =============
  31. *>
  32. *> \verbatim
  33. *>
  34. *> DDRVGB tests the driver routines DGBSV and -SVX.
  35. *> \endverbatim
  36. *
  37. * Arguments:
  38. * ==========
  39. *
  40. *> \param[in] DOTYPE
  41. *> \verbatim
  42. *> DOTYPE is LOGICAL array, dimension (NTYPES)
  43. *> The matrix types to be used for testing. Matrices of type j
  44. *> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
  45. *> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
  46. *> \endverbatim
  47. *>
  48. *> \param[in] NN
  49. *> \verbatim
  50. *> NN is INTEGER
  51. *> The number of values of N contained in the vector NVAL.
  52. *> \endverbatim
  53. *>
  54. *> \param[in] NVAL
  55. *> \verbatim
  56. *> NVAL is INTEGER array, dimension (NN)
  57. *> The values of the matrix column dimension N.
  58. *> \endverbatim
  59. *>
  60. *> \param[in] NRHS
  61. *> \verbatim
  62. *> NRHS is INTEGER
  63. *> The number of right hand side vectors to be generated for
  64. *> each linear system.
  65. *> \endverbatim
  66. *>
  67. *> \param[in] THRESH
  68. *> \verbatim
  69. *> THRESH is DOUBLE PRECISION
  70. *> The threshold value for the test ratios. A result is
  71. *> included in the output file if RESULT >= THRESH. To have
  72. *> every test ratio printed, use THRESH = 0.
  73. *> \endverbatim
  74. *>
  75. *> \param[in] TSTERR
  76. *> \verbatim
  77. *> TSTERR is LOGICAL
  78. *> Flag that indicates whether error exits are to be tested.
  79. *> \endverbatim
  80. *>
  81. *> \param[out] A
  82. *> \verbatim
  83. *> A is DOUBLE PRECISION array, dimension (LA)
  84. *> \endverbatim
  85. *>
  86. *> \param[in] LA
  87. *> \verbatim
  88. *> LA is INTEGER
  89. *> The length of the array A. LA >= (2*NMAX-1)*NMAX
  90. *> where NMAX is the largest entry in NVAL.
  91. *> \endverbatim
  92. *>
  93. *> \param[out] AFB
  94. *> \verbatim
  95. *> AFB is DOUBLE PRECISION array, dimension (LAFB)
  96. *> \endverbatim
  97. *>
  98. *> \param[in] LAFB
  99. *> \verbatim
  100. *> LAFB is INTEGER
  101. *> The length of the array AFB. LAFB >= (3*NMAX-2)*NMAX
  102. *> where NMAX is the largest entry in NVAL.
  103. *> \endverbatim
  104. *>
  105. *> \param[out] ASAV
  106. *> \verbatim
  107. *> ASAV is DOUBLE PRECISION array, dimension (LA)
  108. *> \endverbatim
  109. *>
  110. *> \param[out] B
  111. *> \verbatim
  112. *> B is DOUBLE PRECISION array, dimension (NMAX*NRHS)
  113. *> \endverbatim
  114. *>
  115. *> \param[out] BSAV
  116. *> \verbatim
  117. *> BSAV is DOUBLE PRECISION array, dimension (NMAX*NRHS)
  118. *> \endverbatim
  119. *>
  120. *> \param[out] X
  121. *> \verbatim
  122. *> X is DOUBLE PRECISION array, dimension (NMAX*NRHS)
  123. *> \endverbatim
  124. *>
  125. *> \param[out] XACT
  126. *> \verbatim
  127. *> XACT is DOUBLE PRECISION array, dimension (NMAX*NRHS)
  128. *> \endverbatim
  129. *>
  130. *> \param[out] S
  131. *> \verbatim
  132. *> S is DOUBLE PRECISION array, dimension (2*NMAX)
  133. *> \endverbatim
  134. *>
  135. *> \param[out] WORK
  136. *> \verbatim
  137. *> WORK is DOUBLE PRECISION array, dimension
  138. *> (NMAX*max(3,NRHS,NMAX))
  139. *> \endverbatim
  140. *>
  141. *> \param[out] RWORK
  142. *> \verbatim
  143. *> RWORK is DOUBLE PRECISION array, dimension
  144. *> (max(NMAX,2*NRHS))
  145. *> \endverbatim
  146. *>
  147. *> \param[out] IWORK
  148. *> \verbatim
  149. *> IWORK is INTEGER array, dimension (2*NMAX)
  150. *> \endverbatim
  151. *>
  152. *> \param[in] NOUT
  153. *> \verbatim
  154. *> NOUT is INTEGER
  155. *> The unit number for output.
  156. *> \endverbatim
  157. *
  158. * Authors:
  159. * ========
  160. *
  161. *> \author Univ. of Tennessee
  162. *> \author Univ. of California Berkeley
  163. *> \author Univ. of Colorado Denver
  164. *> \author NAG Ltd.
  165. *
  166. *> \date November 2011
  167. *
  168. *> \ingroup double_lin
  169. *
  170. * =====================================================================
  171. SUBROUTINE DDRVGB( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, A, LA,
  172. $ AFB, LAFB, ASAV, B, BSAV, X, XACT, S, WORK,
  173. $ RWORK, IWORK, NOUT )
  174. *
  175. * -- LAPACK test routine (version 3.4.0) --
  176. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  177. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  178. * November 2011
  179. *
  180. * .. Scalar Arguments ..
  181. LOGICAL TSTERR
  182. INTEGER LA, LAFB, NN, NOUT, NRHS
  183. DOUBLE PRECISION THRESH
  184. * ..
  185. * .. Array Arguments ..
  186. LOGICAL DOTYPE( * )
  187. INTEGER IWORK( * ), NVAL( * )
  188. DOUBLE PRECISION A( * ), AFB( * ), ASAV( * ), B( * ), BSAV( * ),
  189. $ RWORK( * ), S( * ), WORK( * ), X( * ),
  190. $ XACT( * )
  191. * ..
  192. *
  193. * =====================================================================
  194. *
  195. * .. Parameters ..
  196. DOUBLE PRECISION ONE, ZERO
  197. PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  198. INTEGER NTYPES
  199. PARAMETER ( NTYPES = 8 )
  200. INTEGER NTESTS
  201. PARAMETER ( NTESTS = 7 )
  202. INTEGER NTRAN
  203. PARAMETER ( NTRAN = 3 )
  204. * ..
  205. * .. Local Scalars ..
  206. LOGICAL EQUIL, NOFACT, PREFAC, TRFCON, ZEROT
  207. CHARACTER DIST, EQUED, FACT, TRANS, TYPE, XTYPE
  208. CHARACTER*3 PATH
  209. INTEGER I, I1, I2, IEQUED, IFACT, IKL, IKU, IMAT, IN,
  210. $ INFO, IOFF, ITRAN, IZERO, J, K, K1, KL, KU,
  211. $ LDA, LDAFB, LDB, MODE, N, NB, NBMIN, NERRS,
  212. $ NFACT, NFAIL, NIMAT, NKL, NKU, NRUN, NT
  213. DOUBLE PRECISION AINVNM, AMAX, ANORM, ANORMI, ANORMO, ANRMPV,
  214. $ CNDNUM, COLCND, RCOND, RCONDC, RCONDI, RCONDO,
  215. $ ROLDC, ROLDI, ROLDO, ROWCND, RPVGRW
  216. * ..
  217. * .. Local Arrays ..
  218. CHARACTER EQUEDS( 4 ), FACTS( 3 ), TRANSS( NTRAN )
  219. INTEGER ISEED( 4 ), ISEEDY( 4 )
  220. DOUBLE PRECISION RESULT( NTESTS )
  221. * ..
  222. * .. External Functions ..
  223. LOGICAL LSAME
  224. DOUBLE PRECISION DGET06, DLAMCH, DLANGB, DLANGE, DLANTB
  225. EXTERNAL LSAME, DGET06, DLAMCH, DLANGB, DLANGE, DLANTB
  226. * ..
  227. * .. External Subroutines ..
  228. EXTERNAL ALADHD, ALAERH, ALASVM, DERRVX, DGBEQU, DGBSV,
  229. $ DGBSVX, DGBT01, DGBT02, DGBT05, DGBTRF, DGBTRS,
  230. $ DGET04, DLACPY, DLAQGB, DLARHS, DLASET, DLATB4,
  231. $ DLATMS, XLAENV
  232. * ..
  233. * .. Intrinsic Functions ..
  234. INTRINSIC ABS, MAX, MIN
  235. * ..
  236. * .. Scalars in Common ..
  237. LOGICAL LERR, OK
  238. CHARACTER*32 SRNAMT
  239. INTEGER INFOT, NUNIT
  240. * ..
  241. * .. Common blocks ..
  242. COMMON / INFOC / INFOT, NUNIT, OK, LERR
  243. COMMON / SRNAMC / SRNAMT
  244. * ..
  245. * .. Data statements ..
  246. DATA ISEEDY / 1988, 1989, 1990, 1991 /
  247. DATA TRANSS / 'N', 'T', 'C' /
  248. DATA FACTS / 'F', 'N', 'E' /
  249. DATA EQUEDS / 'N', 'R', 'C', 'B' /
  250. * ..
  251. * .. Executable Statements ..
  252. *
  253. * Initialize constants and the random number seed.
  254. *
  255. PATH( 1: 1 ) = 'Double precision'
  256. PATH( 2: 3 ) = 'GB'
  257. NRUN = 0
  258. NFAIL = 0
  259. NERRS = 0
  260. DO 10 I = 1, 4
  261. ISEED( I ) = ISEEDY( I )
  262. 10 CONTINUE
  263. *
  264. * Test the error exits
  265. *
  266. IF( TSTERR )
  267. $ CALL DERRVX( PATH, NOUT )
  268. INFOT = 0
  269. *
  270. * Set the block size and minimum block size for testing.
  271. *
  272. NB = 1
  273. NBMIN = 2
  274. CALL XLAENV( 1, NB )
  275. CALL XLAENV( 2, NBMIN )
  276. *
  277. * Do for each value of N in NVAL
  278. *
  279. DO 150 IN = 1, NN
  280. N = NVAL( IN )
  281. LDB = MAX( N, 1 )
  282. XTYPE = 'N'
  283. *
  284. * Set limits on the number of loop iterations.
  285. *
  286. NKL = MAX( 1, MIN( N, 4 ) )
  287. IF( N.EQ.0 )
  288. $ NKL = 1
  289. NKU = NKL
  290. NIMAT = NTYPES
  291. IF( N.LE.0 )
  292. $ NIMAT = 1
  293. *
  294. DO 140 IKL = 1, NKL
  295. *
  296. * Do for KL = 0, N-1, (3N-1)/4, and (N+1)/4. This order makes
  297. * it easier to skip redundant values for small values of N.
  298. *
  299. IF( IKL.EQ.1 ) THEN
  300. KL = 0
  301. ELSE IF( IKL.EQ.2 ) THEN
  302. KL = MAX( N-1, 0 )
  303. ELSE IF( IKL.EQ.3 ) THEN
  304. KL = ( 3*N-1 ) / 4
  305. ELSE IF( IKL.EQ.4 ) THEN
  306. KL = ( N+1 ) / 4
  307. END IF
  308. DO 130 IKU = 1, NKU
  309. *
  310. * Do for KU = 0, N-1, (3N-1)/4, and (N+1)/4. This order
  311. * makes it easier to skip redundant values for small
  312. * values of N.
  313. *
  314. IF( IKU.EQ.1 ) THEN
  315. KU = 0
  316. ELSE IF( IKU.EQ.2 ) THEN
  317. KU = MAX( N-1, 0 )
  318. ELSE IF( IKU.EQ.3 ) THEN
  319. KU = ( 3*N-1 ) / 4
  320. ELSE IF( IKU.EQ.4 ) THEN
  321. KU = ( N+1 ) / 4
  322. END IF
  323. *
  324. * Check that A and AFB are big enough to generate this
  325. * matrix.
  326. *
  327. LDA = KL + KU + 1
  328. LDAFB = 2*KL + KU + 1
  329. IF( LDA*N.GT.LA .OR. LDAFB*N.GT.LAFB ) THEN
  330. IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
  331. $ CALL ALADHD( NOUT, PATH )
  332. IF( LDA*N.GT.LA ) THEN
  333. WRITE( NOUT, FMT = 9999 )LA, N, KL, KU,
  334. $ N*( KL+KU+1 )
  335. NERRS = NERRS + 1
  336. END IF
  337. IF( LDAFB*N.GT.LAFB ) THEN
  338. WRITE( NOUT, FMT = 9998 )LAFB, N, KL, KU,
  339. $ N*( 2*KL+KU+1 )
  340. NERRS = NERRS + 1
  341. END IF
  342. GO TO 130
  343. END IF
  344. *
  345. DO 120 IMAT = 1, NIMAT
  346. *
  347. * Do the tests only if DOTYPE( IMAT ) is true.
  348. *
  349. IF( .NOT.DOTYPE( IMAT ) )
  350. $ GO TO 120
  351. *
  352. * Skip types 2, 3, or 4 if the matrix is too small.
  353. *
  354. ZEROT = IMAT.GE.2 .AND. IMAT.LE.4
  355. IF( ZEROT .AND. N.LT.IMAT-1 )
  356. $ GO TO 120
  357. *
  358. * Set up parameters with DLATB4 and generate a
  359. * test matrix with DLATMS.
  360. *
  361. CALL DLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM,
  362. $ MODE, CNDNUM, DIST )
  363. RCONDC = ONE / CNDNUM
  364. *
  365. SRNAMT = 'DLATMS'
  366. CALL DLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE,
  367. $ CNDNUM, ANORM, KL, KU, 'Z', A, LDA, WORK,
  368. $ INFO )
  369. *
  370. * Check the error code from DLATMS.
  371. *
  372. IF( INFO.NE.0 ) THEN
  373. CALL ALAERH( PATH, 'DLATMS', INFO, 0, ' ', N, N,
  374. $ KL, KU, -1, IMAT, NFAIL, NERRS, NOUT )
  375. GO TO 120
  376. END IF
  377. *
  378. * For types 2, 3, and 4, zero one or more columns of
  379. * the matrix to test that INFO is returned correctly.
  380. *
  381. IZERO = 0
  382. IF( ZEROT ) THEN
  383. IF( IMAT.EQ.2 ) THEN
  384. IZERO = 1
  385. ELSE IF( IMAT.EQ.3 ) THEN
  386. IZERO = N
  387. ELSE
  388. IZERO = N / 2 + 1
  389. END IF
  390. IOFF = ( IZERO-1 )*LDA
  391. IF( IMAT.LT.4 ) THEN
  392. I1 = MAX( 1, KU+2-IZERO )
  393. I2 = MIN( KL+KU+1, KU+1+( N-IZERO ) )
  394. DO 20 I = I1, I2
  395. A( IOFF+I ) = ZERO
  396. 20 CONTINUE
  397. ELSE
  398. DO 40 J = IZERO, N
  399. DO 30 I = MAX( 1, KU+2-J ),
  400. $ MIN( KL+KU+1, KU+1+( N-J ) )
  401. A( IOFF+I ) = ZERO
  402. 30 CONTINUE
  403. IOFF = IOFF + LDA
  404. 40 CONTINUE
  405. END IF
  406. END IF
  407. *
  408. * Save a copy of the matrix A in ASAV.
  409. *
  410. CALL DLACPY( 'Full', KL+KU+1, N, A, LDA, ASAV, LDA )
  411. *
  412. DO 110 IEQUED = 1, 4
  413. EQUED = EQUEDS( IEQUED )
  414. IF( IEQUED.EQ.1 ) THEN
  415. NFACT = 3
  416. ELSE
  417. NFACT = 1
  418. END IF
  419. *
  420. DO 100 IFACT = 1, NFACT
  421. FACT = FACTS( IFACT )
  422. PREFAC = LSAME( FACT, 'F' )
  423. NOFACT = LSAME( FACT, 'N' )
  424. EQUIL = LSAME( FACT, 'E' )
  425. *
  426. IF( ZEROT ) THEN
  427. IF( PREFAC )
  428. $ GO TO 100
  429. RCONDO = ZERO
  430. RCONDI = ZERO
  431. *
  432. ELSE IF( .NOT.NOFACT ) THEN
  433. *
  434. * Compute the condition number for comparison
  435. * with the value returned by DGESVX (FACT =
  436. * 'N' reuses the condition number from the
  437. * previous iteration with FACT = 'F').
  438. *
  439. CALL DLACPY( 'Full', KL+KU+1, N, ASAV, LDA,
  440. $ AFB( KL+1 ), LDAFB )
  441. IF( EQUIL .OR. IEQUED.GT.1 ) THEN
  442. *
  443. * Compute row and column scale factors to
  444. * equilibrate the matrix A.
  445. *
  446. CALL DGBEQU( N, N, KL, KU, AFB( KL+1 ),
  447. $ LDAFB, S, S( N+1 ), ROWCND,
  448. $ COLCND, AMAX, INFO )
  449. IF( INFO.EQ.0 .AND. N.GT.0 ) THEN
  450. IF( LSAME( EQUED, 'R' ) ) THEN
  451. ROWCND = ZERO
  452. COLCND = ONE
  453. ELSE IF( LSAME( EQUED, 'C' ) ) THEN
  454. ROWCND = ONE
  455. COLCND = ZERO
  456. ELSE IF( LSAME( EQUED, 'B' ) ) THEN
  457. ROWCND = ZERO
  458. COLCND = ZERO
  459. END IF
  460. *
  461. * Equilibrate the matrix.
  462. *
  463. CALL DLAQGB( N, N, KL, KU, AFB( KL+1 ),
  464. $ LDAFB, S, S( N+1 ),
  465. $ ROWCND, COLCND, AMAX,
  466. $ EQUED )
  467. END IF
  468. END IF
  469. *
  470. * Save the condition number of the
  471. * non-equilibrated system for use in DGET04.
  472. *
  473. IF( EQUIL ) THEN
  474. ROLDO = RCONDO
  475. ROLDI = RCONDI
  476. END IF
  477. *
  478. * Compute the 1-norm and infinity-norm of A.
  479. *
  480. ANORMO = DLANGB( '1', N, KL, KU, AFB( KL+1 ),
  481. $ LDAFB, RWORK )
  482. ANORMI = DLANGB( 'I', N, KL, KU, AFB( KL+1 ),
  483. $ LDAFB, RWORK )
  484. *
  485. * Factor the matrix A.
  486. *
  487. CALL DGBTRF( N, N, KL, KU, AFB, LDAFB, IWORK,
  488. $ INFO )
  489. *
  490. * Form the inverse of A.
  491. *
  492. CALL DLASET( 'Full', N, N, ZERO, ONE, WORK,
  493. $ LDB )
  494. SRNAMT = 'DGBTRS'
  495. CALL DGBTRS( 'No transpose', N, KL, KU, N,
  496. $ AFB, LDAFB, IWORK, WORK, LDB,
  497. $ INFO )
  498. *
  499. * Compute the 1-norm condition number of A.
  500. *
  501. AINVNM = DLANGE( '1', N, N, WORK, LDB,
  502. $ RWORK )
  503. IF( ANORMO.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
  504. RCONDO = ONE
  505. ELSE
  506. RCONDO = ( ONE / ANORMO ) / AINVNM
  507. END IF
  508. *
  509. * Compute the infinity-norm condition number
  510. * of A.
  511. *
  512. AINVNM = DLANGE( 'I', N, N, WORK, LDB,
  513. $ RWORK )
  514. IF( ANORMI.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
  515. RCONDI = ONE
  516. ELSE
  517. RCONDI = ( ONE / ANORMI ) / AINVNM
  518. END IF
  519. END IF
  520. *
  521. DO 90 ITRAN = 1, NTRAN
  522. *
  523. * Do for each value of TRANS.
  524. *
  525. TRANS = TRANSS( ITRAN )
  526. IF( ITRAN.EQ.1 ) THEN
  527. RCONDC = RCONDO
  528. ELSE
  529. RCONDC = RCONDI
  530. END IF
  531. *
  532. * Restore the matrix A.
  533. *
  534. CALL DLACPY( 'Full', KL+KU+1, N, ASAV, LDA,
  535. $ A, LDA )
  536. *
  537. * Form an exact solution and set the right hand
  538. * side.
  539. *
  540. SRNAMT = 'DLARHS'
  541. CALL DLARHS( PATH, XTYPE, 'Full', TRANS, N,
  542. $ N, KL, KU, NRHS, A, LDA, XACT,
  543. $ LDB, B, LDB, ISEED, INFO )
  544. XTYPE = 'C'
  545. CALL DLACPY( 'Full', N, NRHS, B, LDB, BSAV,
  546. $ LDB )
  547. *
  548. IF( NOFACT .AND. ITRAN.EQ.1 ) THEN
  549. *
  550. * --- Test DGBSV ---
  551. *
  552. * Compute the LU factorization of the matrix
  553. * and solve the system.
  554. *
  555. CALL DLACPY( 'Full', KL+KU+1, N, A, LDA,
  556. $ AFB( KL+1 ), LDAFB )
  557. CALL DLACPY( 'Full', N, NRHS, B, LDB, X,
  558. $ LDB )
  559. *
  560. SRNAMT = 'DGBSV '
  561. CALL DGBSV( N, KL, KU, NRHS, AFB, LDAFB,
  562. $ IWORK, X, LDB, INFO )
  563. *
  564. * Check error code from DGBSV .
  565. *
  566. IF( INFO.NE.IZERO )
  567. $ CALL ALAERH( PATH, 'DGBSV ', INFO,
  568. $ IZERO, ' ', N, N, KL, KU,
  569. $ NRHS, IMAT, NFAIL, NERRS,
  570. $ NOUT )
  571. *
  572. * Reconstruct matrix from factors and
  573. * compute residual.
  574. *
  575. CALL DGBT01( N, N, KL, KU, A, LDA, AFB,
  576. $ LDAFB, IWORK, WORK,
  577. $ RESULT( 1 ) )
  578. NT = 1
  579. IF( IZERO.EQ.0 ) THEN
  580. *
  581. * Compute residual of the computed
  582. * solution.
  583. *
  584. CALL DLACPY( 'Full', N, NRHS, B, LDB,
  585. $ WORK, LDB )
  586. CALL DGBT02( 'No transpose', N, N, KL,
  587. $ KU, NRHS, A, LDA, X, LDB,
  588. $ WORK, LDB, RESULT( 2 ) )
  589. *
  590. * Check solution from generated exact
  591. * solution.
  592. *
  593. CALL DGET04( N, NRHS, X, LDB, XACT,
  594. $ LDB, RCONDC, RESULT( 3 ) )
  595. NT = 3
  596. END IF
  597. *
  598. * Print information about the tests that did
  599. * not pass the threshold.
  600. *
  601. DO 50 K = 1, NT
  602. IF( RESULT( K ).GE.THRESH ) THEN
  603. IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
  604. $ CALL ALADHD( NOUT, PATH )
  605. WRITE( NOUT, FMT = 9997 )'DGBSV ',
  606. $ N, KL, KU, IMAT, K, RESULT( K )
  607. NFAIL = NFAIL + 1
  608. END IF
  609. 50 CONTINUE
  610. NRUN = NRUN + NT
  611. END IF
  612. *
  613. * --- Test DGBSVX ---
  614. *
  615. IF( .NOT.PREFAC )
  616. $ CALL DLASET( 'Full', 2*KL+KU+1, N, ZERO,
  617. $ ZERO, AFB, LDAFB )
  618. CALL DLASET( 'Full', N, NRHS, ZERO, ZERO, X,
  619. $ LDB )
  620. IF( IEQUED.GT.1 .AND. N.GT.0 ) THEN
  621. *
  622. * Equilibrate the matrix if FACT = 'F' and
  623. * EQUED = 'R', 'C', or 'B'.
  624. *
  625. CALL DLAQGB( N, N, KL, KU, A, LDA, S,
  626. $ S( N+1 ), ROWCND, COLCND,
  627. $ AMAX, EQUED )
  628. END IF
  629. *
  630. * Solve the system and compute the condition
  631. * number and error bounds using DGBSVX.
  632. *
  633. SRNAMT = 'DGBSVX'
  634. CALL DGBSVX( FACT, TRANS, N, KL, KU, NRHS, A,
  635. $ LDA, AFB, LDAFB, IWORK, EQUED,
  636. $ S, S( N+1 ), B, LDB, X, LDB,
  637. $ RCOND, RWORK, RWORK( NRHS+1 ),
  638. $ WORK, IWORK( N+1 ), INFO )
  639. *
  640. * Check the error code from DGBSVX.
  641. *
  642. IF( INFO.NE.IZERO )
  643. $ CALL ALAERH( PATH, 'DGBSVX', INFO, IZERO,
  644. $ FACT // TRANS, N, N, KL, KU,
  645. $ NRHS, IMAT, NFAIL, NERRS,
  646. $ NOUT )
  647. *
  648. * Compare WORK(1) from DGBSVX with the computed
  649. * reciprocal pivot growth factor RPVGRW
  650. *
  651. IF( INFO.NE.0 .AND. INFO.LE.N) THEN
  652. ANRMPV = ZERO
  653. DO 70 J = 1, INFO
  654. DO 60 I = MAX( KU+2-J, 1 ),
  655. $ MIN( N+KU+1-J, KL+KU+1 )
  656. ANRMPV = MAX( ANRMPV,
  657. $ ABS( A( I+( J-1 )*LDA ) ) )
  658. 60 CONTINUE
  659. 70 CONTINUE
  660. RPVGRW = DLANTB( 'M', 'U', 'N', INFO,
  661. $ MIN( INFO-1, KL+KU ),
  662. $ AFB( MAX( 1, KL+KU+2-INFO ) ),
  663. $ LDAFB, WORK )
  664. IF( RPVGRW.EQ.ZERO ) THEN
  665. RPVGRW = ONE
  666. ELSE
  667. RPVGRW = ANRMPV / RPVGRW
  668. END IF
  669. ELSE
  670. RPVGRW = DLANTB( 'M', 'U', 'N', N, KL+KU,
  671. $ AFB, LDAFB, WORK )
  672. IF( RPVGRW.EQ.ZERO ) THEN
  673. RPVGRW = ONE
  674. ELSE
  675. RPVGRW = DLANGB( 'M', N, KL, KU, A,
  676. $ LDA, WORK ) / RPVGRW
  677. END IF
  678. END IF
  679. RESULT( 7 ) = ABS( RPVGRW-WORK( 1 ) ) /
  680. $ MAX( WORK( 1 ), RPVGRW ) /
  681. $ DLAMCH( 'E' )
  682. *
  683. IF( .NOT.PREFAC ) THEN
  684. *
  685. * Reconstruct matrix from factors and
  686. * compute residual.
  687. *
  688. CALL DGBT01( N, N, KL, KU, A, LDA, AFB,
  689. $ LDAFB, IWORK, WORK,
  690. $ RESULT( 1 ) )
  691. K1 = 1
  692. ELSE
  693. K1 = 2
  694. END IF
  695. *
  696. IF( INFO.EQ.0 ) THEN
  697. TRFCON = .FALSE.
  698. *
  699. * Compute residual of the computed solution.
  700. *
  701. CALL DLACPY( 'Full', N, NRHS, BSAV, LDB,
  702. $ WORK, LDB )
  703. CALL DGBT02( TRANS, N, N, KL, KU, NRHS,
  704. $ ASAV, LDA, X, LDB, WORK, LDB,
  705. $ RESULT( 2 ) )
  706. *
  707. * Check solution from generated exact
  708. * solution.
  709. *
  710. IF( NOFACT .OR. ( PREFAC .AND.
  711. $ LSAME( EQUED, 'N' ) ) ) THEN
  712. CALL DGET04( N, NRHS, X, LDB, XACT,
  713. $ LDB, RCONDC, RESULT( 3 ) )
  714. ELSE
  715. IF( ITRAN.EQ.1 ) THEN
  716. ROLDC = ROLDO
  717. ELSE
  718. ROLDC = ROLDI
  719. END IF
  720. CALL DGET04( N, NRHS, X, LDB, XACT,
  721. $ LDB, ROLDC, RESULT( 3 ) )
  722. END IF
  723. *
  724. * Check the error bounds from iterative
  725. * refinement.
  726. *
  727. CALL DGBT05( TRANS, N, KL, KU, NRHS, ASAV,
  728. $ LDA, B, LDB, X, LDB, XACT,
  729. $ LDB, RWORK, RWORK( NRHS+1 ),
  730. $ RESULT( 4 ) )
  731. ELSE
  732. TRFCON = .TRUE.
  733. END IF
  734. *
  735. * Compare RCOND from DGBSVX with the computed
  736. * value in RCONDC.
  737. *
  738. RESULT( 6 ) = DGET06( RCOND, RCONDC )
  739. *
  740. * Print information about the tests that did
  741. * not pass the threshold.
  742. *
  743. IF( .NOT.TRFCON ) THEN
  744. DO 80 K = K1, NTESTS
  745. IF( RESULT( K ).GE.THRESH ) THEN
  746. IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
  747. $ CALL ALADHD( NOUT, PATH )
  748. IF( PREFAC ) THEN
  749. WRITE( NOUT, FMT = 9995 )
  750. $ 'DGBSVX', FACT, TRANS, N, KL,
  751. $ KU, EQUED, IMAT, K,
  752. $ RESULT( K )
  753. ELSE
  754. WRITE( NOUT, FMT = 9996 )
  755. $ 'DGBSVX', FACT, TRANS, N, KL,
  756. $ KU, IMAT, K, RESULT( K )
  757. END IF
  758. NFAIL = NFAIL + 1
  759. END IF
  760. 80 CONTINUE
  761. NRUN = NRUN + 7 - K1
  762. ELSE
  763. IF( RESULT( 1 ).GE.THRESH .AND. .NOT.
  764. $ PREFAC ) THEN
  765. IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
  766. $ CALL ALADHD( NOUT, PATH )
  767. IF( PREFAC ) THEN
  768. WRITE( NOUT, FMT = 9995 )'DGBSVX',
  769. $ FACT, TRANS, N, KL, KU, EQUED,
  770. $ IMAT, 1, RESULT( 1 )
  771. ELSE
  772. WRITE( NOUT, FMT = 9996 )'DGBSVX',
  773. $ FACT, TRANS, N, KL, KU, IMAT, 1,
  774. $ RESULT( 1 )
  775. END IF
  776. NFAIL = NFAIL + 1
  777. NRUN = NRUN + 1
  778. END IF
  779. IF( RESULT( 6 ).GE.THRESH ) THEN
  780. IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
  781. $ CALL ALADHD( NOUT, PATH )
  782. IF( PREFAC ) THEN
  783. WRITE( NOUT, FMT = 9995 )'DGBSVX',
  784. $ FACT, TRANS, N, KL, KU, EQUED,
  785. $ IMAT, 6, RESULT( 6 )
  786. ELSE
  787. WRITE( NOUT, FMT = 9996 )'DGBSVX',
  788. $ FACT, TRANS, N, KL, KU, IMAT, 6,
  789. $ RESULT( 6 )
  790. END IF
  791. NFAIL = NFAIL + 1
  792. NRUN = NRUN + 1
  793. END IF
  794. IF( RESULT( 7 ).GE.THRESH ) THEN
  795. IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
  796. $ CALL ALADHD( NOUT, PATH )
  797. IF( PREFAC ) THEN
  798. WRITE( NOUT, FMT = 9995 )'DGBSVX',
  799. $ FACT, TRANS, N, KL, KU, EQUED,
  800. $ IMAT, 7, RESULT( 7 )
  801. ELSE
  802. WRITE( NOUT, FMT = 9996 )'DGBSVX',
  803. $ FACT, TRANS, N, KL, KU, IMAT, 7,
  804. $ RESULT( 7 )
  805. END IF
  806. NFAIL = NFAIL + 1
  807. NRUN = NRUN + 1
  808. END IF
  809. *
  810. END IF
  811. 90 CONTINUE
  812. 100 CONTINUE
  813. 110 CONTINUE
  814. 120 CONTINUE
  815. 130 CONTINUE
  816. 140 CONTINUE
  817. 150 CONTINUE
  818. *
  819. * Print a summary of the results.
  820. *
  821. CALL ALASVM( PATH, NOUT, NFAIL, NRUN, NERRS )
  822. *
  823. 9999 FORMAT( ' *** In DDRVGB, LA=', I5, ' is too small for N=', I5,
  824. $ ', KU=', I5, ', KL=', I5, / ' ==> Increase LA to at least ',
  825. $ I5 )
  826. 9998 FORMAT( ' *** In DDRVGB, LAFB=', I5, ' is too small for N=', I5,
  827. $ ', KU=', I5, ', KL=', I5, /
  828. $ ' ==> Increase LAFB to at least ', I5 )
  829. 9997 FORMAT( 1X, A, ', N=', I5, ', KL=', I5, ', KU=', I5, ', type ',
  830. $ I1, ', test(', I1, ')=', G12.5 )
  831. 9996 FORMAT( 1X, A, '( ''', A1, ''',''', A1, ''',', I5, ',', I5, ',',
  832. $ I5, ',...), type ', I1, ', test(', I1, ')=', G12.5 )
  833. 9995 FORMAT( 1X, A, '( ''', A1, ''',''', A1, ''',', I5, ',', I5, ',',
  834. $ I5, ',...), EQUED=''', A1, ''', type ', I1, ', test(', I1,
  835. $ ')=', G12.5 )
  836. *
  837. RETURN
  838. *
  839. * End of DDRVGB
  840. *
  841. END