You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zlaein.f 9.7 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354
  1. *> \brief \b ZLAEIN computes a specified right or left eigenvector of an upper Hessenberg matrix by inverse iteration.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZLAEIN + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlaein.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlaein.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlaein.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZLAEIN( RIGHTV, NOINIT, N, H, LDH, W, V, B, LDB, RWORK,
  22. * EPS3, SMLNUM, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * LOGICAL NOINIT, RIGHTV
  26. * INTEGER INFO, LDB, LDH, N
  27. * DOUBLE PRECISION EPS3, SMLNUM
  28. * COMPLEX*16 W
  29. * ..
  30. * .. Array Arguments ..
  31. * DOUBLE PRECISION RWORK( * )
  32. * COMPLEX*16 B( LDB, * ), H( LDH, * ), V( * )
  33. * ..
  34. *
  35. *
  36. *> \par Purpose:
  37. * =============
  38. *>
  39. *> \verbatim
  40. *>
  41. *> ZLAEIN uses inverse iteration to find a right or left eigenvector
  42. *> corresponding to the eigenvalue W of a complex upper Hessenberg
  43. *> matrix H.
  44. *> \endverbatim
  45. *
  46. * Arguments:
  47. * ==========
  48. *
  49. *> \param[in] RIGHTV
  50. *> \verbatim
  51. *> RIGHTV is LOGICAL
  52. *> = .TRUE. : compute right eigenvector;
  53. *> = .FALSE.: compute left eigenvector.
  54. *> \endverbatim
  55. *>
  56. *> \param[in] NOINIT
  57. *> \verbatim
  58. *> NOINIT is LOGICAL
  59. *> = .TRUE. : no initial vector supplied in V
  60. *> = .FALSE.: initial vector supplied in V.
  61. *> \endverbatim
  62. *>
  63. *> \param[in] N
  64. *> \verbatim
  65. *> N is INTEGER
  66. *> The order of the matrix H. N >= 0.
  67. *> \endverbatim
  68. *>
  69. *> \param[in] H
  70. *> \verbatim
  71. *> H is COMPLEX*16 array, dimension (LDH,N)
  72. *> The upper Hessenberg matrix H.
  73. *> \endverbatim
  74. *>
  75. *> \param[in] LDH
  76. *> \verbatim
  77. *> LDH is INTEGER
  78. *> The leading dimension of the array H. LDH >= max(1,N).
  79. *> \endverbatim
  80. *>
  81. *> \param[in] W
  82. *> \verbatim
  83. *> W is COMPLEX*16
  84. *> The eigenvalue of H whose corresponding right or left
  85. *> eigenvector is to be computed.
  86. *> \endverbatim
  87. *>
  88. *> \param[in,out] V
  89. *> \verbatim
  90. *> V is COMPLEX*16 array, dimension (N)
  91. *> On entry, if NOINIT = .FALSE., V must contain a starting
  92. *> vector for inverse iteration; otherwise V need not be set.
  93. *> On exit, V contains the computed eigenvector, normalized so
  94. *> that the component of largest magnitude has magnitude 1; here
  95. *> the magnitude of a complex number (x,y) is taken to be
  96. *> |x| + |y|.
  97. *> \endverbatim
  98. *>
  99. *> \param[out] B
  100. *> \verbatim
  101. *> B is COMPLEX*16 array, dimension (LDB,N)
  102. *> \endverbatim
  103. *>
  104. *> \param[in] LDB
  105. *> \verbatim
  106. *> LDB is INTEGER
  107. *> The leading dimension of the array B. LDB >= max(1,N).
  108. *> \endverbatim
  109. *>
  110. *> \param[out] RWORK
  111. *> \verbatim
  112. *> RWORK is DOUBLE PRECISION array, dimension (N)
  113. *> \endverbatim
  114. *>
  115. *> \param[in] EPS3
  116. *> \verbatim
  117. *> EPS3 is DOUBLE PRECISION
  118. *> A small machine-dependent value which is used to perturb
  119. *> close eigenvalues, and to replace zero pivots.
  120. *> \endverbatim
  121. *>
  122. *> \param[in] SMLNUM
  123. *> \verbatim
  124. *> SMLNUM is DOUBLE PRECISION
  125. *> A machine-dependent value close to the underflow threshold.
  126. *> \endverbatim
  127. *>
  128. *> \param[out] INFO
  129. *> \verbatim
  130. *> INFO is INTEGER
  131. *> = 0: successful exit
  132. *> = 1: inverse iteration did not converge; V is set to the
  133. *> last iterate.
  134. *> \endverbatim
  135. *
  136. * Authors:
  137. * ========
  138. *
  139. *> \author Univ. of Tennessee
  140. *> \author Univ. of California Berkeley
  141. *> \author Univ. of Colorado Denver
  142. *> \author NAG Ltd.
  143. *
  144. *> \date December 2016
  145. *
  146. *> \ingroup complex16OTHERauxiliary
  147. *
  148. * =====================================================================
  149. SUBROUTINE ZLAEIN( RIGHTV, NOINIT, N, H, LDH, W, V, B, LDB, RWORK,
  150. $ EPS3, SMLNUM, INFO )
  151. *
  152. * -- LAPACK auxiliary routine (version 3.7.0) --
  153. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  154. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  155. * December 2016
  156. *
  157. * .. Scalar Arguments ..
  158. LOGICAL NOINIT, RIGHTV
  159. INTEGER INFO, LDB, LDH, N
  160. DOUBLE PRECISION EPS3, SMLNUM
  161. COMPLEX*16 W
  162. * ..
  163. * .. Array Arguments ..
  164. DOUBLE PRECISION RWORK( * )
  165. COMPLEX*16 B( LDB, * ), H( LDH, * ), V( * )
  166. * ..
  167. *
  168. * =====================================================================
  169. *
  170. * .. Parameters ..
  171. DOUBLE PRECISION ONE, TENTH
  172. PARAMETER ( ONE = 1.0D+0, TENTH = 1.0D-1 )
  173. COMPLEX*16 ZERO
  174. PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) )
  175. * ..
  176. * .. Local Scalars ..
  177. CHARACTER NORMIN, TRANS
  178. INTEGER I, IERR, ITS, J
  179. DOUBLE PRECISION GROWTO, NRMSML, ROOTN, RTEMP, SCALE, VNORM
  180. COMPLEX*16 CDUM, EI, EJ, TEMP, X
  181. * ..
  182. * .. External Functions ..
  183. INTEGER IZAMAX
  184. DOUBLE PRECISION DZASUM, DZNRM2
  185. COMPLEX*16 ZLADIV
  186. EXTERNAL IZAMAX, DZASUM, DZNRM2, ZLADIV
  187. * ..
  188. * .. External Subroutines ..
  189. EXTERNAL ZDSCAL, ZLATRS
  190. * ..
  191. * .. Intrinsic Functions ..
  192. INTRINSIC ABS, DBLE, DIMAG, MAX, SQRT
  193. * ..
  194. * .. Statement Functions ..
  195. DOUBLE PRECISION CABS1
  196. * ..
  197. * .. Statement Function definitions ..
  198. CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) )
  199. * ..
  200. * .. Executable Statements ..
  201. *
  202. INFO = 0
  203. *
  204. * GROWTO is the threshold used in the acceptance test for an
  205. * eigenvector.
  206. *
  207. ROOTN = SQRT( DBLE( N ) )
  208. GROWTO = TENTH / ROOTN
  209. NRMSML = MAX( ONE, EPS3*ROOTN )*SMLNUM
  210. *
  211. * Form B = H - W*I (except that the subdiagonal elements are not
  212. * stored).
  213. *
  214. DO 20 J = 1, N
  215. DO 10 I = 1, J - 1
  216. B( I, J ) = H( I, J )
  217. 10 CONTINUE
  218. B( J, J ) = H( J, J ) - W
  219. 20 CONTINUE
  220. *
  221. IF( NOINIT ) THEN
  222. *
  223. * Initialize V.
  224. *
  225. DO 30 I = 1, N
  226. V( I ) = EPS3
  227. 30 CONTINUE
  228. ELSE
  229. *
  230. * Scale supplied initial vector.
  231. *
  232. VNORM = DZNRM2( N, V, 1 )
  233. CALL ZDSCAL( N, ( EPS3*ROOTN ) / MAX( VNORM, NRMSML ), V, 1 )
  234. END IF
  235. *
  236. IF( RIGHTV ) THEN
  237. *
  238. * LU decomposition with partial pivoting of B, replacing zero
  239. * pivots by EPS3.
  240. *
  241. DO 60 I = 1, N - 1
  242. EI = H( I+1, I )
  243. IF( CABS1( B( I, I ) ).LT.CABS1( EI ) ) THEN
  244. *
  245. * Interchange rows and eliminate.
  246. *
  247. X = ZLADIV( B( I, I ), EI )
  248. B( I, I ) = EI
  249. DO 40 J = I + 1, N
  250. TEMP = B( I+1, J )
  251. B( I+1, J ) = B( I, J ) - X*TEMP
  252. B( I, J ) = TEMP
  253. 40 CONTINUE
  254. ELSE
  255. *
  256. * Eliminate without interchange.
  257. *
  258. IF( B( I, I ).EQ.ZERO )
  259. $ B( I, I ) = EPS3
  260. X = ZLADIV( EI, B( I, I ) )
  261. IF( X.NE.ZERO ) THEN
  262. DO 50 J = I + 1, N
  263. B( I+1, J ) = B( I+1, J ) - X*B( I, J )
  264. 50 CONTINUE
  265. END IF
  266. END IF
  267. 60 CONTINUE
  268. IF( B( N, N ).EQ.ZERO )
  269. $ B( N, N ) = EPS3
  270. *
  271. TRANS = 'N'
  272. *
  273. ELSE
  274. *
  275. * UL decomposition with partial pivoting of B, replacing zero
  276. * pivots by EPS3.
  277. *
  278. DO 90 J = N, 2, -1
  279. EJ = H( J, J-1 )
  280. IF( CABS1( B( J, J ) ).LT.CABS1( EJ ) ) THEN
  281. *
  282. * Interchange columns and eliminate.
  283. *
  284. X = ZLADIV( B( J, J ), EJ )
  285. B( J, J ) = EJ
  286. DO 70 I = 1, J - 1
  287. TEMP = B( I, J-1 )
  288. B( I, J-1 ) = B( I, J ) - X*TEMP
  289. B( I, J ) = TEMP
  290. 70 CONTINUE
  291. ELSE
  292. *
  293. * Eliminate without interchange.
  294. *
  295. IF( B( J, J ).EQ.ZERO )
  296. $ B( J, J ) = EPS3
  297. X = ZLADIV( EJ, B( J, J ) )
  298. IF( X.NE.ZERO ) THEN
  299. DO 80 I = 1, J - 1
  300. B( I, J-1 ) = B( I, J-1 ) - X*B( I, J )
  301. 80 CONTINUE
  302. END IF
  303. END IF
  304. 90 CONTINUE
  305. IF( B( 1, 1 ).EQ.ZERO )
  306. $ B( 1, 1 ) = EPS3
  307. *
  308. TRANS = 'C'
  309. *
  310. END IF
  311. *
  312. NORMIN = 'N'
  313. DO 110 ITS = 1, N
  314. *
  315. * Solve U*x = scale*v for a right eigenvector
  316. * or U**H *x = scale*v for a left eigenvector,
  317. * overwriting x on v.
  318. *
  319. CALL ZLATRS( 'Upper', TRANS, 'Nonunit', NORMIN, N, B, LDB, V,
  320. $ SCALE, RWORK, IERR )
  321. NORMIN = 'Y'
  322. *
  323. * Test for sufficient growth in the norm of v.
  324. *
  325. VNORM = DZASUM( N, V, 1 )
  326. IF( VNORM.GE.GROWTO*SCALE )
  327. $ GO TO 120
  328. *
  329. * Choose new orthogonal starting vector and try again.
  330. *
  331. RTEMP = EPS3 / ( ROOTN+ONE )
  332. V( 1 ) = EPS3
  333. DO 100 I = 2, N
  334. V( I ) = RTEMP
  335. 100 CONTINUE
  336. V( N-ITS+1 ) = V( N-ITS+1 ) - EPS3*ROOTN
  337. 110 CONTINUE
  338. *
  339. * Failure to find eigenvector in N iterations.
  340. *
  341. INFO = 1
  342. *
  343. 120 CONTINUE
  344. *
  345. * Normalize eigenvector.
  346. *
  347. I = IZAMAX( N, V, 1 )
  348. CALL ZDSCAL( N, ONE / CABS1( V( I ) ), V, 1 )
  349. *
  350. RETURN
  351. *
  352. * End of ZLAEIN
  353. *
  354. END