You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

stprfs.f 15 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473
  1. *> \brief \b STPRFS
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download STPRFS + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/stprfs.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/stprfs.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/stprfs.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE STPRFS( UPLO, TRANS, DIAG, N, NRHS, AP, B, LDB, X, LDX,
  22. * FERR, BERR, WORK, IWORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER DIAG, TRANS, UPLO
  26. * INTEGER INFO, LDB, LDX, N, NRHS
  27. * ..
  28. * .. Array Arguments ..
  29. * INTEGER IWORK( * )
  30. * REAL AP( * ), B( LDB, * ), BERR( * ), FERR( * ),
  31. * $ WORK( * ), X( LDX, * )
  32. * ..
  33. *
  34. *
  35. *> \par Purpose:
  36. * =============
  37. *>
  38. *> \verbatim
  39. *>
  40. *> STPRFS provides error bounds and backward error estimates for the
  41. *> solution to a system of linear equations with a triangular packed
  42. *> coefficient matrix.
  43. *>
  44. *> The solution matrix X must be computed by STPTRS or some other
  45. *> means before entering this routine. STPRFS does not do iterative
  46. *> refinement because doing so cannot improve the backward error.
  47. *> \endverbatim
  48. *
  49. * Arguments:
  50. * ==========
  51. *
  52. *> \param[in] UPLO
  53. *> \verbatim
  54. *> UPLO is CHARACTER*1
  55. *> = 'U': A is upper triangular;
  56. *> = 'L': A is lower triangular.
  57. *> \endverbatim
  58. *>
  59. *> \param[in] TRANS
  60. *> \verbatim
  61. *> TRANS is CHARACTER*1
  62. *> Specifies the form of the system of equations:
  63. *> = 'N': A * X = B (No transpose)
  64. *> = 'T': A**T * X = B (Transpose)
  65. *> = 'C': A**H * X = B (Conjugate transpose = Transpose)
  66. *> \endverbatim
  67. *>
  68. *> \param[in] DIAG
  69. *> \verbatim
  70. *> DIAG is CHARACTER*1
  71. *> = 'N': A is non-unit triangular;
  72. *> = 'U': A is unit triangular.
  73. *> \endverbatim
  74. *>
  75. *> \param[in] N
  76. *> \verbatim
  77. *> N is INTEGER
  78. *> The order of the matrix A. N >= 0.
  79. *> \endverbatim
  80. *>
  81. *> \param[in] NRHS
  82. *> \verbatim
  83. *> NRHS is INTEGER
  84. *> The number of right hand sides, i.e., the number of columns
  85. *> of the matrices B and X. NRHS >= 0.
  86. *> \endverbatim
  87. *>
  88. *> \param[in] AP
  89. *> \verbatim
  90. *> AP is REAL array, dimension (N*(N+1)/2)
  91. *> The upper or lower triangular matrix A, packed columnwise in
  92. *> a linear array. The j-th column of A is stored in the array
  93. *> AP as follows:
  94. *> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
  95. *> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
  96. *> If DIAG = 'U', the diagonal elements of A are not referenced
  97. *> and are assumed to be 1.
  98. *> \endverbatim
  99. *>
  100. *> \param[in] B
  101. *> \verbatim
  102. *> B is REAL array, dimension (LDB,NRHS)
  103. *> The right hand side matrix B.
  104. *> \endverbatim
  105. *>
  106. *> \param[in] LDB
  107. *> \verbatim
  108. *> LDB is INTEGER
  109. *> The leading dimension of the array B. LDB >= max(1,N).
  110. *> \endverbatim
  111. *>
  112. *> \param[in] X
  113. *> \verbatim
  114. *> X is REAL array, dimension (LDX,NRHS)
  115. *> The solution matrix X.
  116. *> \endverbatim
  117. *>
  118. *> \param[in] LDX
  119. *> \verbatim
  120. *> LDX is INTEGER
  121. *> The leading dimension of the array X. LDX >= max(1,N).
  122. *> \endverbatim
  123. *>
  124. *> \param[out] FERR
  125. *> \verbatim
  126. *> FERR is REAL array, dimension (NRHS)
  127. *> The estimated forward error bound for each solution vector
  128. *> X(j) (the j-th column of the solution matrix X).
  129. *> If XTRUE is the true solution corresponding to X(j), FERR(j)
  130. *> is an estimated upper bound for the magnitude of the largest
  131. *> element in (X(j) - XTRUE) divided by the magnitude of the
  132. *> largest element in X(j). The estimate is as reliable as
  133. *> the estimate for RCOND, and is almost always a slight
  134. *> overestimate of the true error.
  135. *> \endverbatim
  136. *>
  137. *> \param[out] BERR
  138. *> \verbatim
  139. *> BERR is REAL array, dimension (NRHS)
  140. *> The componentwise relative backward error of each solution
  141. *> vector X(j) (i.e., the smallest relative change in
  142. *> any element of A or B that makes X(j) an exact solution).
  143. *> \endverbatim
  144. *>
  145. *> \param[out] WORK
  146. *> \verbatim
  147. *> WORK is REAL array, dimension (3*N)
  148. *> \endverbatim
  149. *>
  150. *> \param[out] IWORK
  151. *> \verbatim
  152. *> IWORK is INTEGER array, dimension (N)
  153. *> \endverbatim
  154. *>
  155. *> \param[out] INFO
  156. *> \verbatim
  157. *> INFO is INTEGER
  158. *> = 0: successful exit
  159. *> < 0: if INFO = -i, the i-th argument had an illegal value
  160. *> \endverbatim
  161. *
  162. * Authors:
  163. * ========
  164. *
  165. *> \author Univ. of Tennessee
  166. *> \author Univ. of California Berkeley
  167. *> \author Univ. of Colorado Denver
  168. *> \author NAG Ltd.
  169. *
  170. *> \date December 2016
  171. *
  172. *> \ingroup realOTHERcomputational
  173. *
  174. * =====================================================================
  175. SUBROUTINE STPRFS( UPLO, TRANS, DIAG, N, NRHS, AP, B, LDB, X, LDX,
  176. $ FERR, BERR, WORK, IWORK, INFO )
  177. *
  178. * -- LAPACK computational routine (version 3.7.0) --
  179. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  180. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  181. * December 2016
  182. *
  183. * .. Scalar Arguments ..
  184. CHARACTER DIAG, TRANS, UPLO
  185. INTEGER INFO, LDB, LDX, N, NRHS
  186. * ..
  187. * .. Array Arguments ..
  188. INTEGER IWORK( * )
  189. REAL AP( * ), B( LDB, * ), BERR( * ), FERR( * ),
  190. $ WORK( * ), X( LDX, * )
  191. * ..
  192. *
  193. * =====================================================================
  194. *
  195. * .. Parameters ..
  196. REAL ZERO
  197. PARAMETER ( ZERO = 0.0E+0 )
  198. REAL ONE
  199. PARAMETER ( ONE = 1.0E+0 )
  200. * ..
  201. * .. Local Scalars ..
  202. LOGICAL NOTRAN, NOUNIT, UPPER
  203. CHARACTER TRANST
  204. INTEGER I, J, K, KASE, KC, NZ
  205. REAL EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
  206. * ..
  207. * .. Local Arrays ..
  208. INTEGER ISAVE( 3 )
  209. * ..
  210. * .. External Subroutines ..
  211. EXTERNAL SAXPY, SCOPY, SLACN2, STPMV, STPSV, XERBLA
  212. * ..
  213. * .. Intrinsic Functions ..
  214. INTRINSIC ABS, MAX
  215. * ..
  216. * .. External Functions ..
  217. LOGICAL LSAME
  218. REAL SLAMCH
  219. EXTERNAL LSAME, SLAMCH
  220. * ..
  221. * .. Executable Statements ..
  222. *
  223. * Test the input parameters.
  224. *
  225. INFO = 0
  226. UPPER = LSAME( UPLO, 'U' )
  227. NOTRAN = LSAME( TRANS, 'N' )
  228. NOUNIT = LSAME( DIAG, 'N' )
  229. *
  230. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  231. INFO = -1
  232. ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
  233. $ LSAME( TRANS, 'C' ) ) THEN
  234. INFO = -2
  235. ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
  236. INFO = -3
  237. ELSE IF( N.LT.0 ) THEN
  238. INFO = -4
  239. ELSE IF( NRHS.LT.0 ) THEN
  240. INFO = -5
  241. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  242. INFO = -8
  243. ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  244. INFO = -10
  245. END IF
  246. IF( INFO.NE.0 ) THEN
  247. CALL XERBLA( 'STPRFS', -INFO )
  248. RETURN
  249. END IF
  250. *
  251. * Quick return if possible
  252. *
  253. IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
  254. DO 10 J = 1, NRHS
  255. FERR( J ) = ZERO
  256. BERR( J ) = ZERO
  257. 10 CONTINUE
  258. RETURN
  259. END IF
  260. *
  261. IF( NOTRAN ) THEN
  262. TRANST = 'T'
  263. ELSE
  264. TRANST = 'N'
  265. END IF
  266. *
  267. * NZ = maximum number of nonzero elements in each row of A, plus 1
  268. *
  269. NZ = N + 1
  270. EPS = SLAMCH( 'Epsilon' )
  271. SAFMIN = SLAMCH( 'Safe minimum' )
  272. SAFE1 = NZ*SAFMIN
  273. SAFE2 = SAFE1 / EPS
  274. *
  275. * Do for each right hand side
  276. *
  277. DO 250 J = 1, NRHS
  278. *
  279. * Compute residual R = B - op(A) * X,
  280. * where op(A) = A or A**T, depending on TRANS.
  281. *
  282. CALL SCOPY( N, X( 1, J ), 1, WORK( N+1 ), 1 )
  283. CALL STPMV( UPLO, TRANS, DIAG, N, AP, WORK( N+1 ), 1 )
  284. CALL SAXPY( N, -ONE, B( 1, J ), 1, WORK( N+1 ), 1 )
  285. *
  286. * Compute componentwise relative backward error from formula
  287. *
  288. * max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) )
  289. *
  290. * where abs(Z) is the componentwise absolute value of the matrix
  291. * or vector Z. If the i-th component of the denominator is less
  292. * than SAFE2, then SAFE1 is added to the i-th components of the
  293. * numerator and denominator before dividing.
  294. *
  295. DO 20 I = 1, N
  296. WORK( I ) = ABS( B( I, J ) )
  297. 20 CONTINUE
  298. *
  299. IF( NOTRAN ) THEN
  300. *
  301. * Compute abs(A)*abs(X) + abs(B).
  302. *
  303. IF( UPPER ) THEN
  304. KC = 1
  305. IF( NOUNIT ) THEN
  306. DO 40 K = 1, N
  307. XK = ABS( X( K, J ) )
  308. DO 30 I = 1, K
  309. WORK( I ) = WORK( I ) + ABS( AP( KC+I-1 ) )*XK
  310. 30 CONTINUE
  311. KC = KC + K
  312. 40 CONTINUE
  313. ELSE
  314. DO 60 K = 1, N
  315. XK = ABS( X( K, J ) )
  316. DO 50 I = 1, K - 1
  317. WORK( I ) = WORK( I ) + ABS( AP( KC+I-1 ) )*XK
  318. 50 CONTINUE
  319. WORK( K ) = WORK( K ) + XK
  320. KC = KC + K
  321. 60 CONTINUE
  322. END IF
  323. ELSE
  324. KC = 1
  325. IF( NOUNIT ) THEN
  326. DO 80 K = 1, N
  327. XK = ABS( X( K, J ) )
  328. DO 70 I = K, N
  329. WORK( I ) = WORK( I ) + ABS( AP( KC+I-K ) )*XK
  330. 70 CONTINUE
  331. KC = KC + N - K + 1
  332. 80 CONTINUE
  333. ELSE
  334. DO 100 K = 1, N
  335. XK = ABS( X( K, J ) )
  336. DO 90 I = K + 1, N
  337. WORK( I ) = WORK( I ) + ABS( AP( KC+I-K ) )*XK
  338. 90 CONTINUE
  339. WORK( K ) = WORK( K ) + XK
  340. KC = KC + N - K + 1
  341. 100 CONTINUE
  342. END IF
  343. END IF
  344. ELSE
  345. *
  346. * Compute abs(A**T)*abs(X) + abs(B).
  347. *
  348. IF( UPPER ) THEN
  349. KC = 1
  350. IF( NOUNIT ) THEN
  351. DO 120 K = 1, N
  352. S = ZERO
  353. DO 110 I = 1, K
  354. S = S + ABS( AP( KC+I-1 ) )*ABS( X( I, J ) )
  355. 110 CONTINUE
  356. WORK( K ) = WORK( K ) + S
  357. KC = KC + K
  358. 120 CONTINUE
  359. ELSE
  360. DO 140 K = 1, N
  361. S = ABS( X( K, J ) )
  362. DO 130 I = 1, K - 1
  363. S = S + ABS( AP( KC+I-1 ) )*ABS( X( I, J ) )
  364. 130 CONTINUE
  365. WORK( K ) = WORK( K ) + S
  366. KC = KC + K
  367. 140 CONTINUE
  368. END IF
  369. ELSE
  370. KC = 1
  371. IF( NOUNIT ) THEN
  372. DO 160 K = 1, N
  373. S = ZERO
  374. DO 150 I = K, N
  375. S = S + ABS( AP( KC+I-K ) )*ABS( X( I, J ) )
  376. 150 CONTINUE
  377. WORK( K ) = WORK( K ) + S
  378. KC = KC + N - K + 1
  379. 160 CONTINUE
  380. ELSE
  381. DO 180 K = 1, N
  382. S = ABS( X( K, J ) )
  383. DO 170 I = K + 1, N
  384. S = S + ABS( AP( KC+I-K ) )*ABS( X( I, J ) )
  385. 170 CONTINUE
  386. WORK( K ) = WORK( K ) + S
  387. KC = KC + N - K + 1
  388. 180 CONTINUE
  389. END IF
  390. END IF
  391. END IF
  392. S = ZERO
  393. DO 190 I = 1, N
  394. IF( WORK( I ).GT.SAFE2 ) THEN
  395. S = MAX( S, ABS( WORK( N+I ) ) / WORK( I ) )
  396. ELSE
  397. S = MAX( S, ( ABS( WORK( N+I ) )+SAFE1 ) /
  398. $ ( WORK( I )+SAFE1 ) )
  399. END IF
  400. 190 CONTINUE
  401. BERR( J ) = S
  402. *
  403. * Bound error from formula
  404. *
  405. * norm(X - XTRUE) / norm(X) .le. FERR =
  406. * norm( abs(inv(op(A)))*
  407. * ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X)
  408. *
  409. * where
  410. * norm(Z) is the magnitude of the largest component of Z
  411. * inv(op(A)) is the inverse of op(A)
  412. * abs(Z) is the componentwise absolute value of the matrix or
  413. * vector Z
  414. * NZ is the maximum number of nonzeros in any row of A, plus 1
  415. * EPS is machine epsilon
  416. *
  417. * The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B))
  418. * is incremented by SAFE1 if the i-th component of
  419. * abs(op(A))*abs(X) + abs(B) is less than SAFE2.
  420. *
  421. * Use SLACN2 to estimate the infinity-norm of the matrix
  422. * inv(op(A)) * diag(W),
  423. * where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) )))
  424. *
  425. DO 200 I = 1, N
  426. IF( WORK( I ).GT.SAFE2 ) THEN
  427. WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I )
  428. ELSE
  429. WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I ) + SAFE1
  430. END IF
  431. 200 CONTINUE
  432. *
  433. KASE = 0
  434. 210 CONTINUE
  435. CALL SLACN2( N, WORK( 2*N+1 ), WORK( N+1 ), IWORK, FERR( J ),
  436. $ KASE, ISAVE )
  437. IF( KASE.NE.0 ) THEN
  438. IF( KASE.EQ.1 ) THEN
  439. *
  440. * Multiply by diag(W)*inv(op(A)**T).
  441. *
  442. CALL STPSV( UPLO, TRANST, DIAG, N, AP, WORK( N+1 ), 1 )
  443. DO 220 I = 1, N
  444. WORK( N+I ) = WORK( I )*WORK( N+I )
  445. 220 CONTINUE
  446. ELSE
  447. *
  448. * Multiply by inv(op(A))*diag(W).
  449. *
  450. DO 230 I = 1, N
  451. WORK( N+I ) = WORK( I )*WORK( N+I )
  452. 230 CONTINUE
  453. CALL STPSV( UPLO, TRANS, DIAG, N, AP, WORK( N+1 ), 1 )
  454. END IF
  455. GO TO 210
  456. END IF
  457. *
  458. * Normalize error.
  459. *
  460. LSTRES = ZERO
  461. DO 240 I = 1, N
  462. LSTRES = MAX( LSTRES, ABS( X( I, J ) ) )
  463. 240 CONTINUE
  464. IF( LSTRES.NE.ZERO )
  465. $ FERR( J ) = FERR( J ) / LSTRES
  466. *
  467. 250 CONTINUE
  468. *
  469. RETURN
  470. *
  471. * End of STPRFS
  472. *
  473. END