You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

slantb.f 12 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380
  1. *> \brief \b SLANTB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a triangular band matrix.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SLANTB + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slantb.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slantb.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slantb.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * REAL FUNCTION SLANTB( NORM, UPLO, DIAG, N, K, AB,
  22. * LDAB, WORK )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER DIAG, NORM, UPLO
  26. * INTEGER K, LDAB, N
  27. * ..
  28. * .. Array Arguments ..
  29. * REAL AB( LDAB, * ), WORK( * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> SLANTB returns the value of the one norm, or the Frobenius norm, or
  39. *> the infinity norm, or the element of largest absolute value of an
  40. *> n by n triangular band matrix A, with ( k + 1 ) diagonals.
  41. *> \endverbatim
  42. *>
  43. *> \return SLANTB
  44. *> \verbatim
  45. *>
  46. *> SLANTB = ( max(abs(A(i,j))), NORM = 'M' or 'm'
  47. *> (
  48. *> ( norm1(A), NORM = '1', 'O' or 'o'
  49. *> (
  50. *> ( normI(A), NORM = 'I' or 'i'
  51. *> (
  52. *> ( normF(A), NORM = 'F', 'f', 'E' or 'e'
  53. *>
  54. *> where norm1 denotes the one norm of a matrix (maximum column sum),
  55. *> normI denotes the infinity norm of a matrix (maximum row sum) and
  56. *> normF denotes the Frobenius norm of a matrix (square root of sum of
  57. *> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
  58. *> \endverbatim
  59. *
  60. * Arguments:
  61. * ==========
  62. *
  63. *> \param[in] NORM
  64. *> \verbatim
  65. *> NORM is CHARACTER*1
  66. *> Specifies the value to be returned in SLANTB as described
  67. *> above.
  68. *> \endverbatim
  69. *>
  70. *> \param[in] UPLO
  71. *> \verbatim
  72. *> UPLO is CHARACTER*1
  73. *> Specifies whether the matrix A is upper or lower triangular.
  74. *> = 'U': Upper triangular
  75. *> = 'L': Lower triangular
  76. *> \endverbatim
  77. *>
  78. *> \param[in] DIAG
  79. *> \verbatim
  80. *> DIAG is CHARACTER*1
  81. *> Specifies whether or not the matrix A is unit triangular.
  82. *> = 'N': Non-unit triangular
  83. *> = 'U': Unit triangular
  84. *> \endverbatim
  85. *>
  86. *> \param[in] N
  87. *> \verbatim
  88. *> N is INTEGER
  89. *> The order of the matrix A. N >= 0. When N = 0, SLANTB is
  90. *> set to zero.
  91. *> \endverbatim
  92. *>
  93. *> \param[in] K
  94. *> \verbatim
  95. *> K is INTEGER
  96. *> The number of super-diagonals of the matrix A if UPLO = 'U',
  97. *> or the number of sub-diagonals of the matrix A if UPLO = 'L'.
  98. *> K >= 0.
  99. *> \endverbatim
  100. *>
  101. *> \param[in] AB
  102. *> \verbatim
  103. *> AB is REAL array, dimension (LDAB,N)
  104. *> The upper or lower triangular band matrix A, stored in the
  105. *> first k+1 rows of AB. The j-th column of A is stored
  106. *> in the j-th column of the array AB as follows:
  107. *> if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for max(1,j-k)<=i<=j;
  108. *> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+k).
  109. *> Note that when DIAG = 'U', the elements of the array AB
  110. *> corresponding to the diagonal elements of the matrix A are
  111. *> not referenced, but are assumed to be one.
  112. *> \endverbatim
  113. *>
  114. *> \param[in] LDAB
  115. *> \verbatim
  116. *> LDAB is INTEGER
  117. *> The leading dimension of the array AB. LDAB >= K+1.
  118. *> \endverbatim
  119. *>
  120. *> \param[out] WORK
  121. *> \verbatim
  122. *> WORK is REAL array, dimension (MAX(1,LWORK)),
  123. *> where LWORK >= N when NORM = 'I'; otherwise, WORK is not
  124. *> referenced.
  125. *> \endverbatim
  126. *
  127. * Authors:
  128. * ========
  129. *
  130. *> \author Univ. of Tennessee
  131. *> \author Univ. of California Berkeley
  132. *> \author Univ. of Colorado Denver
  133. *> \author NAG Ltd.
  134. *
  135. *> \date December 2016
  136. *
  137. *> \ingroup realOTHERauxiliary
  138. *
  139. * =====================================================================
  140. REAL FUNCTION SLANTB( NORM, UPLO, DIAG, N, K, AB,
  141. $ LDAB, WORK )
  142. *
  143. * -- LAPACK auxiliary routine (version 3.7.0) --
  144. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  145. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  146. * December 2016
  147. *
  148. IMPLICIT NONE
  149. * .. Scalar Arguments ..
  150. CHARACTER DIAG, NORM, UPLO
  151. INTEGER K, LDAB, N
  152. * ..
  153. * .. Array Arguments ..
  154. REAL AB( LDAB, * ), WORK( * )
  155. * ..
  156. *
  157. * =====================================================================
  158. *
  159. * .. Parameters ..
  160. REAL ONE, ZERO
  161. PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
  162. * ..
  163. * .. Local Scalars ..
  164. LOGICAL UDIAG
  165. INTEGER I, J, L
  166. REAL SUM, VALUE
  167. * ..
  168. * .. Local Arrays ..
  169. REAL SSQ( 2 ), COLSSQ( 2 )
  170. * ..
  171. * .. External Functions ..
  172. LOGICAL LSAME, SISNAN
  173. EXTERNAL LSAME, SISNAN
  174. * ..
  175. * .. External Subroutines ..
  176. EXTERNAL SLASSQ, SCOMBSSQ
  177. * ..
  178. * .. Intrinsic Functions ..
  179. INTRINSIC ABS, MAX, MIN, SQRT
  180. * ..
  181. * .. Executable Statements ..
  182. *
  183. IF( N.EQ.0 ) THEN
  184. VALUE = ZERO
  185. ELSE IF( LSAME( NORM, 'M' ) ) THEN
  186. *
  187. * Find max(abs(A(i,j))).
  188. *
  189. IF( LSAME( DIAG, 'U' ) ) THEN
  190. VALUE = ONE
  191. IF( LSAME( UPLO, 'U' ) ) THEN
  192. DO 20 J = 1, N
  193. DO 10 I = MAX( K+2-J, 1 ), K
  194. SUM = ABS( AB( I, J ) )
  195. IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
  196. 10 CONTINUE
  197. 20 CONTINUE
  198. ELSE
  199. DO 40 J = 1, N
  200. DO 30 I = 2, MIN( N+1-J, K+1 )
  201. SUM = ABS( AB( I, J ) )
  202. IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
  203. 30 CONTINUE
  204. 40 CONTINUE
  205. END IF
  206. ELSE
  207. VALUE = ZERO
  208. IF( LSAME( UPLO, 'U' ) ) THEN
  209. DO 60 J = 1, N
  210. DO 50 I = MAX( K+2-J, 1 ), K + 1
  211. SUM = ABS( AB( I, J ) )
  212. IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
  213. 50 CONTINUE
  214. 60 CONTINUE
  215. ELSE
  216. DO 80 J = 1, N
  217. DO 70 I = 1, MIN( N+1-J, K+1 )
  218. SUM = ABS( AB( I, J ) )
  219. IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
  220. 70 CONTINUE
  221. 80 CONTINUE
  222. END IF
  223. END IF
  224. ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN
  225. *
  226. * Find norm1(A).
  227. *
  228. VALUE = ZERO
  229. UDIAG = LSAME( DIAG, 'U' )
  230. IF( LSAME( UPLO, 'U' ) ) THEN
  231. DO 110 J = 1, N
  232. IF( UDIAG ) THEN
  233. SUM = ONE
  234. DO 90 I = MAX( K+2-J, 1 ), K
  235. SUM = SUM + ABS( AB( I, J ) )
  236. 90 CONTINUE
  237. ELSE
  238. SUM = ZERO
  239. DO 100 I = MAX( K+2-J, 1 ), K + 1
  240. SUM = SUM + ABS( AB( I, J ) )
  241. 100 CONTINUE
  242. END IF
  243. IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
  244. 110 CONTINUE
  245. ELSE
  246. DO 140 J = 1, N
  247. IF( UDIAG ) THEN
  248. SUM = ONE
  249. DO 120 I = 2, MIN( N+1-J, K+1 )
  250. SUM = SUM + ABS( AB( I, J ) )
  251. 120 CONTINUE
  252. ELSE
  253. SUM = ZERO
  254. DO 130 I = 1, MIN( N+1-J, K+1 )
  255. SUM = SUM + ABS( AB( I, J ) )
  256. 130 CONTINUE
  257. END IF
  258. IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
  259. 140 CONTINUE
  260. END IF
  261. ELSE IF( LSAME( NORM, 'I' ) ) THEN
  262. *
  263. * Find normI(A).
  264. *
  265. VALUE = ZERO
  266. IF( LSAME( UPLO, 'U' ) ) THEN
  267. IF( LSAME( DIAG, 'U' ) ) THEN
  268. DO 150 I = 1, N
  269. WORK( I ) = ONE
  270. 150 CONTINUE
  271. DO 170 J = 1, N
  272. L = K + 1 - J
  273. DO 160 I = MAX( 1, J-K ), J - 1
  274. WORK( I ) = WORK( I ) + ABS( AB( L+I, J ) )
  275. 160 CONTINUE
  276. 170 CONTINUE
  277. ELSE
  278. DO 180 I = 1, N
  279. WORK( I ) = ZERO
  280. 180 CONTINUE
  281. DO 200 J = 1, N
  282. L = K + 1 - J
  283. DO 190 I = MAX( 1, J-K ), J
  284. WORK( I ) = WORK( I ) + ABS( AB( L+I, J ) )
  285. 190 CONTINUE
  286. 200 CONTINUE
  287. END IF
  288. ELSE
  289. IF( LSAME( DIAG, 'U' ) ) THEN
  290. DO 210 I = 1, N
  291. WORK( I ) = ONE
  292. 210 CONTINUE
  293. DO 230 J = 1, N
  294. L = 1 - J
  295. DO 220 I = J + 1, MIN( N, J+K )
  296. WORK( I ) = WORK( I ) + ABS( AB( L+I, J ) )
  297. 220 CONTINUE
  298. 230 CONTINUE
  299. ELSE
  300. DO 240 I = 1, N
  301. WORK( I ) = ZERO
  302. 240 CONTINUE
  303. DO 260 J = 1, N
  304. L = 1 - J
  305. DO 250 I = J, MIN( N, J+K )
  306. WORK( I ) = WORK( I ) + ABS( AB( L+I, J ) )
  307. 250 CONTINUE
  308. 260 CONTINUE
  309. END IF
  310. END IF
  311. DO 270 I = 1, N
  312. SUM = WORK( I )
  313. IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
  314. 270 CONTINUE
  315. ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
  316. *
  317. * Find normF(A).
  318. * SSQ(1) is scale
  319. * SSQ(2) is sum-of-squares
  320. * For better accuracy, sum each column separately.
  321. *
  322. IF( LSAME( UPLO, 'U' ) ) THEN
  323. IF( LSAME( DIAG, 'U' ) ) THEN
  324. SSQ( 1 ) = ONE
  325. SSQ( 2 ) = N
  326. IF( K.GT.0 ) THEN
  327. DO 280 J = 2, N
  328. COLSSQ( 1 ) = ZERO
  329. COLSSQ( 2 ) = ONE
  330. CALL SLASSQ( MIN( J-1, K ),
  331. $ AB( MAX( K+2-J, 1 ), J ), 1,
  332. $ COLSSQ( 1 ), COLSSQ( 2 ) )
  333. CALL SCOMBSSQ( SSQ, COLSSQ )
  334. 280 CONTINUE
  335. END IF
  336. ELSE
  337. SSQ( 1 ) = ZERO
  338. SSQ( 2 ) = ONE
  339. DO 290 J = 1, N
  340. COLSSQ( 1 ) = ZERO
  341. COLSSQ( 2 ) = ONE
  342. CALL SLASSQ( MIN( J, K+1 ), AB( MAX( K+2-J, 1 ), J ),
  343. $ 1, COLSSQ( 1 ), COLSSQ( 2 ) )
  344. CALL SCOMBSSQ( SSQ, COLSSQ )
  345. 290 CONTINUE
  346. END IF
  347. ELSE
  348. IF( LSAME( DIAG, 'U' ) ) THEN
  349. SSQ( 1 ) = ONE
  350. SSQ( 2 ) = N
  351. IF( K.GT.0 ) THEN
  352. DO 300 J = 1, N - 1
  353. COLSSQ( 1 ) = ZERO
  354. COLSSQ( 2 ) = ONE
  355. CALL SLASSQ( MIN( N-J, K ), AB( 2, J ), 1,
  356. $ COLSSQ( 1 ), COLSSQ( 2 ) )
  357. CALL SCOMBSSQ( SSQ, COLSSQ )
  358. 300 CONTINUE
  359. END IF
  360. ELSE
  361. SSQ( 1 ) = ZERO
  362. SSQ( 2 ) = ONE
  363. DO 310 J = 1, N
  364. COLSSQ( 1 ) = ZERO
  365. COLSSQ( 2 ) = ONE
  366. CALL SLASSQ( MIN( N-J+1, K+1 ), AB( 1, J ), 1,
  367. $ COLSSQ( 1 ), COLSSQ( 2 ) )
  368. CALL SCOMBSSQ( SSQ, COLSSQ )
  369. 310 CONTINUE
  370. END IF
  371. END IF
  372. VALUE = SSQ( 1 )*SQRT( SSQ( 2 ) )
  373. END IF
  374. *
  375. SLANTB = VALUE
  376. RETURN
  377. *
  378. * End of SLANTB
  379. *
  380. END