You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dorgl2.f 5.2 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204
  1. *> \brief \b DORGL2
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DORGL2 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dorgl2.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dorgl2.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dorgl2.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DORGL2( M, N, K, A, LDA, TAU, WORK, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * INTEGER INFO, K, LDA, M, N
  25. * ..
  26. * .. Array Arguments ..
  27. * DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * )
  28. * ..
  29. *
  30. *
  31. *> \par Purpose:
  32. * =============
  33. *>
  34. *> \verbatim
  35. *>
  36. *> DORGL2 generates an m by n real matrix Q with orthonormal rows,
  37. *> which is defined as the first m rows of a product of k elementary
  38. *> reflectors of order n
  39. *>
  40. *> Q = H(k) . . . H(2) H(1)
  41. *>
  42. *> as returned by DGELQF.
  43. *> \endverbatim
  44. *
  45. * Arguments:
  46. * ==========
  47. *
  48. *> \param[in] M
  49. *> \verbatim
  50. *> M is INTEGER
  51. *> The number of rows of the matrix Q. M >= 0.
  52. *> \endverbatim
  53. *>
  54. *> \param[in] N
  55. *> \verbatim
  56. *> N is INTEGER
  57. *> The number of columns of the matrix Q. N >= M.
  58. *> \endverbatim
  59. *>
  60. *> \param[in] K
  61. *> \verbatim
  62. *> K is INTEGER
  63. *> The number of elementary reflectors whose product defines the
  64. *> matrix Q. M >= K >= 0.
  65. *> \endverbatim
  66. *>
  67. *> \param[in,out] A
  68. *> \verbatim
  69. *> A is DOUBLE PRECISION array, dimension (LDA,N)
  70. *> On entry, the i-th row must contain the vector which defines
  71. *> the elementary reflector H(i), for i = 1,2,...,k, as returned
  72. *> by DGELQF in the first k rows of its array argument A.
  73. *> On exit, the m-by-n matrix Q.
  74. *> \endverbatim
  75. *>
  76. *> \param[in] LDA
  77. *> \verbatim
  78. *> LDA is INTEGER
  79. *> The first dimension of the array A. LDA >= max(1,M).
  80. *> \endverbatim
  81. *>
  82. *> \param[in] TAU
  83. *> \verbatim
  84. *> TAU is DOUBLE PRECISION array, dimension (K)
  85. *> TAU(i) must contain the scalar factor of the elementary
  86. *> reflector H(i), as returned by DGELQF.
  87. *> \endverbatim
  88. *>
  89. *> \param[out] WORK
  90. *> \verbatim
  91. *> WORK is DOUBLE PRECISION array, dimension (M)
  92. *> \endverbatim
  93. *>
  94. *> \param[out] INFO
  95. *> \verbatim
  96. *> INFO is INTEGER
  97. *> = 0: successful exit
  98. *> < 0: if INFO = -i, the i-th argument has an illegal value
  99. *> \endverbatim
  100. *
  101. * Authors:
  102. * ========
  103. *
  104. *> \author Univ. of Tennessee
  105. *> \author Univ. of California Berkeley
  106. *> \author Univ. of Colorado Denver
  107. *> \author NAG Ltd.
  108. *
  109. *> \date December 2016
  110. *
  111. *> \ingroup doubleOTHERcomputational
  112. *
  113. * =====================================================================
  114. SUBROUTINE DORGL2( M, N, K, A, LDA, TAU, WORK, INFO )
  115. *
  116. * -- LAPACK computational routine (version 3.7.0) --
  117. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  118. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  119. * December 2016
  120. *
  121. * .. Scalar Arguments ..
  122. INTEGER INFO, K, LDA, M, N
  123. * ..
  124. * .. Array Arguments ..
  125. DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * )
  126. * ..
  127. *
  128. * =====================================================================
  129. *
  130. * .. Parameters ..
  131. DOUBLE PRECISION ONE, ZERO
  132. PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  133. * ..
  134. * .. Local Scalars ..
  135. INTEGER I, J, L
  136. * ..
  137. * .. External Subroutines ..
  138. EXTERNAL DLARF, DSCAL, XERBLA
  139. * ..
  140. * .. Intrinsic Functions ..
  141. INTRINSIC MAX
  142. * ..
  143. * .. Executable Statements ..
  144. *
  145. * Test the input arguments
  146. *
  147. INFO = 0
  148. IF( M.LT.0 ) THEN
  149. INFO = -1
  150. ELSE IF( N.LT.M ) THEN
  151. INFO = -2
  152. ELSE IF( K.LT.0 .OR. K.GT.M ) THEN
  153. INFO = -3
  154. ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  155. INFO = -5
  156. END IF
  157. IF( INFO.NE.0 ) THEN
  158. CALL XERBLA( 'DORGL2', -INFO )
  159. RETURN
  160. END IF
  161. *
  162. * Quick return if possible
  163. *
  164. IF( M.LE.0 )
  165. $ RETURN
  166. *
  167. IF( K.LT.M ) THEN
  168. *
  169. * Initialise rows k+1:m to rows of the unit matrix
  170. *
  171. DO 20 J = 1, N
  172. DO 10 L = K + 1, M
  173. A( L, J ) = ZERO
  174. 10 CONTINUE
  175. IF( J.GT.K .AND. J.LE.M )
  176. $ A( J, J ) = ONE
  177. 20 CONTINUE
  178. END IF
  179. *
  180. DO 40 I = K, 1, -1
  181. *
  182. * Apply H(i) to A(i:m,i:n) from the right
  183. *
  184. IF( I.LT.N ) THEN
  185. IF( I.LT.M ) THEN
  186. A( I, I ) = ONE
  187. CALL DLARF( 'Right', M-I, N-I+1, A( I, I ), LDA,
  188. $ TAU( I ), A( I+1, I ), LDA, WORK )
  189. END IF
  190. CALL DSCAL( N-I, -TAU( I ), A( I, I+1 ), LDA )
  191. END IF
  192. A( I, I ) = ONE - TAU( I )
  193. *
  194. * Set A(i,1:i-1) to zero
  195. *
  196. DO 30 L = 1, I - 1
  197. A( I, L ) = ZERO
  198. 30 CONTINUE
  199. 40 CONTINUE
  200. RETURN
  201. *
  202. * End of DORGL2
  203. *
  204. END