You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dlansy.f 8.0 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263
  1. *> \brief \b DLANSY returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real symmetric matrix.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DLANSY + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlansy.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlansy.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlansy.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * DOUBLE PRECISION FUNCTION DLANSY( NORM, UPLO, N, A, LDA, WORK )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER NORM, UPLO
  25. * INTEGER LDA, N
  26. * ..
  27. * .. Array Arguments ..
  28. * DOUBLE PRECISION A( LDA, * ), WORK( * )
  29. * ..
  30. *
  31. *
  32. *> \par Purpose:
  33. * =============
  34. *>
  35. *> \verbatim
  36. *>
  37. *> DLANSY returns the value of the one norm, or the Frobenius norm, or
  38. *> the infinity norm, or the element of largest absolute value of a
  39. *> real symmetric matrix A.
  40. *> \endverbatim
  41. *>
  42. *> \return DLANSY
  43. *> \verbatim
  44. *>
  45. *> DLANSY = ( max(abs(A(i,j))), NORM = 'M' or 'm'
  46. *> (
  47. *> ( norm1(A), NORM = '1', 'O' or 'o'
  48. *> (
  49. *> ( normI(A), NORM = 'I' or 'i'
  50. *> (
  51. *> ( normF(A), NORM = 'F', 'f', 'E' or 'e'
  52. *>
  53. *> where norm1 denotes the one norm of a matrix (maximum column sum),
  54. *> normI denotes the infinity norm of a matrix (maximum row sum) and
  55. *> normF denotes the Frobenius norm of a matrix (square root of sum of
  56. *> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
  57. *> \endverbatim
  58. *
  59. * Arguments:
  60. * ==========
  61. *
  62. *> \param[in] NORM
  63. *> \verbatim
  64. *> NORM is CHARACTER*1
  65. *> Specifies the value to be returned in DLANSY as described
  66. *> above.
  67. *> \endverbatim
  68. *>
  69. *> \param[in] UPLO
  70. *> \verbatim
  71. *> UPLO is CHARACTER*1
  72. *> Specifies whether the upper or lower triangular part of the
  73. *> symmetric matrix A is to be referenced.
  74. *> = 'U': Upper triangular part of A is referenced
  75. *> = 'L': Lower triangular part of A is referenced
  76. *> \endverbatim
  77. *>
  78. *> \param[in] N
  79. *> \verbatim
  80. *> N is INTEGER
  81. *> The order of the matrix A. N >= 0. When N = 0, DLANSY is
  82. *> set to zero.
  83. *> \endverbatim
  84. *>
  85. *> \param[in] A
  86. *> \verbatim
  87. *> A is DOUBLE PRECISION array, dimension (LDA,N)
  88. *> The symmetric matrix A. If UPLO = 'U', the leading n by n
  89. *> upper triangular part of A contains the upper triangular part
  90. *> of the matrix A, and the strictly lower triangular part of A
  91. *> is not referenced. If UPLO = 'L', the leading n by n lower
  92. *> triangular part of A contains the lower triangular part of
  93. *> the matrix A, and the strictly upper triangular part of A is
  94. *> not referenced.
  95. *> \endverbatim
  96. *>
  97. *> \param[in] LDA
  98. *> \verbatim
  99. *> LDA is INTEGER
  100. *> The leading dimension of the array A. LDA >= max(N,1).
  101. *> \endverbatim
  102. *>
  103. *> \param[out] WORK
  104. *> \verbatim
  105. *> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
  106. *> where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
  107. *> WORK is not referenced.
  108. *> \endverbatim
  109. *
  110. * Authors:
  111. * ========
  112. *
  113. *> \author Univ. of Tennessee
  114. *> \author Univ. of California Berkeley
  115. *> \author Univ. of Colorado Denver
  116. *> \author NAG Ltd.
  117. *
  118. *> \date December 2016
  119. *
  120. *> \ingroup doubleSYauxiliary
  121. *
  122. * =====================================================================
  123. DOUBLE PRECISION FUNCTION DLANSY( NORM, UPLO, N, A, LDA, WORK )
  124. *
  125. * -- LAPACK auxiliary routine (version 3.7.0) --
  126. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  127. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  128. * December 2016
  129. *
  130. IMPLICIT NONE
  131. * .. Scalar Arguments ..
  132. CHARACTER NORM, UPLO
  133. INTEGER LDA, N
  134. * ..
  135. * .. Array Arguments ..
  136. DOUBLE PRECISION A( LDA, * ), WORK( * )
  137. * ..
  138. *
  139. * =====================================================================
  140. *
  141. * .. Parameters ..
  142. DOUBLE PRECISION ONE, ZERO
  143. PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  144. * ..
  145. * .. Local Scalars ..
  146. INTEGER I, J
  147. DOUBLE PRECISION ABSA, SUM, VALUE
  148. * ..
  149. * .. Local Arrays ..
  150. DOUBLE PRECISION SSQ( 2 ), COLSSQ( 2 )
  151. * ..
  152. * .. External Functions ..
  153. LOGICAL LSAME, DISNAN
  154. EXTERNAL LSAME, DISNAN
  155. * ..
  156. * .. External Subroutines ..
  157. EXTERNAL DLASSQ, DCOMBSSQ
  158. * ..
  159. * .. Intrinsic Functions ..
  160. INTRINSIC ABS, SQRT
  161. * ..
  162. * .. Executable Statements ..
  163. *
  164. IF( N.EQ.0 ) THEN
  165. VALUE = ZERO
  166. ELSE IF( LSAME( NORM, 'M' ) ) THEN
  167. *
  168. * Find max(abs(A(i,j))).
  169. *
  170. VALUE = ZERO
  171. IF( LSAME( UPLO, 'U' ) ) THEN
  172. DO 20 J = 1, N
  173. DO 10 I = 1, J
  174. SUM = ABS( A( I, J ) )
  175. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  176. 10 CONTINUE
  177. 20 CONTINUE
  178. ELSE
  179. DO 40 J = 1, N
  180. DO 30 I = J, N
  181. SUM = ABS( A( I, J ) )
  182. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  183. 30 CONTINUE
  184. 40 CONTINUE
  185. END IF
  186. ELSE IF( ( LSAME( NORM, 'I' ) ) .OR. ( LSAME( NORM, 'O' ) ) .OR.
  187. $ ( NORM.EQ.'1' ) ) THEN
  188. *
  189. * Find normI(A) ( = norm1(A), since A is symmetric).
  190. *
  191. VALUE = ZERO
  192. IF( LSAME( UPLO, 'U' ) ) THEN
  193. DO 60 J = 1, N
  194. SUM = ZERO
  195. DO 50 I = 1, J - 1
  196. ABSA = ABS( A( I, J ) )
  197. SUM = SUM + ABSA
  198. WORK( I ) = WORK( I ) + ABSA
  199. 50 CONTINUE
  200. WORK( J ) = SUM + ABS( A( J, J ) )
  201. 60 CONTINUE
  202. DO 70 I = 1, N
  203. SUM = WORK( I )
  204. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  205. 70 CONTINUE
  206. ELSE
  207. DO 80 I = 1, N
  208. WORK( I ) = ZERO
  209. 80 CONTINUE
  210. DO 100 J = 1, N
  211. SUM = WORK( J ) + ABS( A( J, J ) )
  212. DO 90 I = J + 1, N
  213. ABSA = ABS( A( I, J ) )
  214. SUM = SUM + ABSA
  215. WORK( I ) = WORK( I ) + ABSA
  216. 90 CONTINUE
  217. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  218. 100 CONTINUE
  219. END IF
  220. ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
  221. *
  222. * Find normF(A).
  223. * SSQ(1) is scale
  224. * SSQ(2) is sum-of-squares
  225. * For better accuracy, sum each column separately.
  226. *
  227. SSQ( 1 ) = ZERO
  228. SSQ( 2 ) = ONE
  229. *
  230. * Sum off-diagonals
  231. *
  232. IF( LSAME( UPLO, 'U' ) ) THEN
  233. DO 110 J = 2, N
  234. COLSSQ( 1 ) = ZERO
  235. COLSSQ( 2 ) = ONE
  236. CALL DLASSQ( J-1, A( 1, J ), 1, COLSSQ(1), COLSSQ(2) )
  237. CALL DCOMBSSQ( SSQ, COLSSQ )
  238. 110 CONTINUE
  239. ELSE
  240. DO 120 J = 1, N - 1
  241. COLSSQ( 1 ) = ZERO
  242. COLSSQ( 2 ) = ONE
  243. CALL DLASSQ( N-J, A( J+1, J ), 1, COLSSQ(1), COLSSQ(2) )
  244. CALL DCOMBSSQ( SSQ, COLSSQ )
  245. 120 CONTINUE
  246. END IF
  247. SSQ( 2 ) = 2*SSQ( 2 )
  248. *
  249. * Sum diagonal
  250. *
  251. COLSSQ( 1 ) = ZERO
  252. COLSSQ( 2 ) = ONE
  253. CALL DLASSQ( N, A, LDA+1, COLSSQ( 1 ), COLSSQ( 2 ) )
  254. CALL DCOMBSSQ( SSQ, COLSSQ )
  255. VALUE = SSQ( 1 )*SQRT( SSQ( 2 ) )
  256. END IF
  257. *
  258. DLANSY = VALUE
  259. RETURN
  260. *
  261. * End of DLANSY
  262. *
  263. END