You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zsyequb.f 9.9 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343
  1. *> \brief \b ZSYEQUB
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZSYEQUB + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zsyequb.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zsyequb.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zsyequb.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZSYEQUB( UPLO, N, A, LDA, S, SCOND, AMAX, WORK, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * INTEGER INFO, LDA, N
  25. * DOUBLE PRECISION AMAX, SCOND
  26. * CHARACTER UPLO
  27. * ..
  28. * .. Array Arguments ..
  29. * COMPLEX*16 A( LDA, * ), WORK( * )
  30. * DOUBLE PRECISION S( * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> ZSYEQUB computes row and column scalings intended to equilibrate a
  40. *> symmetric matrix A (with respect to the Euclidean norm) and reduce
  41. *> its condition number. The scale factors S are computed by the BIN
  42. *> algorithm (see references) so that the scaled matrix B with elements
  43. *> B(i,j) = S(i)*A(i,j)*S(j) has a condition number within a factor N of
  44. *> the smallest possible condition number over all possible diagonal
  45. *> scalings.
  46. *> \endverbatim
  47. *
  48. * Arguments:
  49. * ==========
  50. *
  51. *> \param[in] UPLO
  52. *> \verbatim
  53. *> UPLO is CHARACTER*1
  54. *> = 'U': Upper triangle of A is stored;
  55. *> = 'L': Lower triangle of A is stored.
  56. *> \endverbatim
  57. *>
  58. *> \param[in] N
  59. *> \verbatim
  60. *> N is INTEGER
  61. *> The order of the matrix A. N >= 0.
  62. *> \endverbatim
  63. *>
  64. *> \param[in] A
  65. *> \verbatim
  66. *> A is COMPLEX*16 array, dimension (LDA,N)
  67. *> The N-by-N symmetric matrix whose scaling factors are to be
  68. *> computed.
  69. *> \endverbatim
  70. *>
  71. *> \param[in] LDA
  72. *> \verbatim
  73. *> LDA is INTEGER
  74. *> The leading dimension of the array A. LDA >= max(1,N).
  75. *> \endverbatim
  76. *>
  77. *> \param[out] S
  78. *> \verbatim
  79. *> S is DOUBLE PRECISION array, dimension (N)
  80. *> If INFO = 0, S contains the scale factors for A.
  81. *> \endverbatim
  82. *>
  83. *> \param[out] SCOND
  84. *> \verbatim
  85. *> SCOND is DOUBLE PRECISION
  86. *> If INFO = 0, S contains the ratio of the smallest S(i) to
  87. *> the largest S(i). If SCOND >= 0.1 and AMAX is neither too
  88. *> large nor too small, it is not worth scaling by S.
  89. *> \endverbatim
  90. *>
  91. *> \param[out] AMAX
  92. *> \verbatim
  93. *> AMAX is DOUBLE PRECISION
  94. *> Largest absolute value of any matrix element. If AMAX is
  95. *> very close to overflow or very close to underflow, the
  96. *> matrix should be scaled.
  97. *> \endverbatim
  98. *>
  99. *> \param[out] WORK
  100. *> \verbatim
  101. *> WORK is COMPLEX*16 array, dimension (2*N)
  102. *> \endverbatim
  103. *>
  104. *> \param[out] INFO
  105. *> \verbatim
  106. *> INFO is INTEGER
  107. *> = 0: successful exit
  108. *> < 0: if INFO = -i, the i-th argument had an illegal value
  109. *> > 0: if INFO = i, the i-th diagonal element is nonpositive.
  110. *> \endverbatim
  111. *
  112. * Authors:
  113. * ========
  114. *
  115. *> \author Univ. of Tennessee
  116. *> \author Univ. of California Berkeley
  117. *> \author Univ. of Colorado Denver
  118. *> \author NAG Ltd.
  119. *
  120. *> \date November 2017
  121. *
  122. *> \ingroup complex16SYcomputational
  123. *
  124. *> \par References:
  125. * ================
  126. *>
  127. *> Livne, O.E. and Golub, G.H., "Scaling by Binormalization", \n
  128. *> Numerical Algorithms, vol. 35, no. 1, pp. 97-120, January 2004. \n
  129. *> DOI 10.1023/B:NUMA.0000016606.32820.69 \n
  130. *> Tech report version: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.3.1679
  131. *>
  132. * =====================================================================
  133. SUBROUTINE ZSYEQUB( UPLO, N, A, LDA, S, SCOND, AMAX, WORK, INFO )
  134. *
  135. * -- LAPACK computational routine (version 3.8.0) --
  136. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  137. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  138. * November 2017
  139. *
  140. * .. Scalar Arguments ..
  141. INTEGER INFO, LDA, N
  142. DOUBLE PRECISION AMAX, SCOND
  143. CHARACTER UPLO
  144. * ..
  145. * .. Array Arguments ..
  146. COMPLEX*16 A( LDA, * ), WORK( * )
  147. DOUBLE PRECISION S( * )
  148. * ..
  149. *
  150. * =====================================================================
  151. *
  152. * .. Parameters ..
  153. DOUBLE PRECISION ONE, ZERO
  154. PARAMETER ( ONE = 1.0D0, ZERO = 0.0D0 )
  155. INTEGER MAX_ITER
  156. PARAMETER ( MAX_ITER = 100 )
  157. * ..
  158. * .. Local Scalars ..
  159. INTEGER I, J, ITER
  160. DOUBLE PRECISION AVG, STD, TOL, C0, C1, C2, T, U, SI, D, BASE,
  161. $ SMIN, SMAX, SMLNUM, BIGNUM, SCALE, SUMSQ
  162. LOGICAL UP
  163. COMPLEX*16 ZDUM
  164. * ..
  165. * .. External Functions ..
  166. DOUBLE PRECISION DLAMCH
  167. LOGICAL LSAME
  168. EXTERNAL DLAMCH, LSAME
  169. * ..
  170. * .. External Subroutines ..
  171. EXTERNAL ZLASSQ, XERBLA
  172. * ..
  173. * .. Intrinsic Functions ..
  174. INTRINSIC ABS, DBLE, DIMAG, INT, LOG, MAX, MIN, SQRT
  175. * ..
  176. * .. Statement Functions ..
  177. DOUBLE PRECISION CABS1
  178. * ..
  179. * .. Statement Function Definitions ..
  180. CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
  181. * ..
  182. * .. Executable Statements ..
  183. *
  184. * Test the input parameters.
  185. *
  186. INFO = 0
  187. IF ( .NOT. ( LSAME( UPLO, 'U' ) .OR. LSAME( UPLO, 'L' ) ) ) THEN
  188. INFO = -1
  189. ELSE IF ( N .LT. 0 ) THEN
  190. INFO = -2
  191. ELSE IF ( LDA .LT. MAX( 1, N ) ) THEN
  192. INFO = -4
  193. END IF
  194. IF ( INFO .NE. 0 ) THEN
  195. CALL XERBLA( 'ZSYEQUB', -INFO )
  196. RETURN
  197. END IF
  198. UP = LSAME( UPLO, 'U' )
  199. AMAX = ZERO
  200. *
  201. * Quick return if possible.
  202. *
  203. IF ( N .EQ. 0 ) THEN
  204. SCOND = ONE
  205. RETURN
  206. END IF
  207. DO I = 1, N
  208. S( I ) = ZERO
  209. END DO
  210. AMAX = ZERO
  211. IF ( UP ) THEN
  212. DO J = 1, N
  213. DO I = 1, J-1
  214. S( I ) = MAX( S( I ), CABS1( A( I, J ) ) )
  215. S( J ) = MAX( S( J ), CABS1( A( I, J ) ) )
  216. AMAX = MAX( AMAX, CABS1( A( I, J ) ) )
  217. END DO
  218. S( J ) = MAX( S( J ), CABS1( A( J, J ) ) )
  219. AMAX = MAX( AMAX, CABS1( A( J, J ) ) )
  220. END DO
  221. ELSE
  222. DO J = 1, N
  223. S( J ) = MAX( S( J ), CABS1( A( J, J ) ) )
  224. AMAX = MAX( AMAX, CABS1( A( J, J ) ) )
  225. DO I = J+1, N
  226. S( I ) = MAX( S( I ), CABS1( A( I, J ) ) )
  227. S( J ) = MAX( S( J ), CABS1( A( I, J ) ) )
  228. AMAX = MAX( AMAX, CABS1( A( I, J ) ) )
  229. END DO
  230. END DO
  231. END IF
  232. DO J = 1, N
  233. S( J ) = 1.0D0 / S( J )
  234. END DO
  235. TOL = ONE / SQRT( 2.0D0 * N )
  236. DO ITER = 1, MAX_ITER
  237. SCALE = 0.0D0
  238. SUMSQ = 0.0D0
  239. * beta = |A|s
  240. DO I = 1, N
  241. WORK( I ) = ZERO
  242. END DO
  243. IF ( UP ) THEN
  244. DO J = 1, N
  245. DO I = 1, J-1
  246. WORK( I ) = WORK( I ) + CABS1( A( I, J ) ) * S( J )
  247. WORK( J ) = WORK( J ) + CABS1( A( I, J ) ) * S( I )
  248. END DO
  249. WORK( J ) = WORK( J ) + CABS1( A( J, J ) ) * S( J )
  250. END DO
  251. ELSE
  252. DO J = 1, N
  253. WORK( J ) = WORK( J ) + CABS1( A( J, J ) ) * S( J )
  254. DO I = J+1, N
  255. WORK( I ) = WORK( I ) + CABS1( A( I, J ) ) * S( J )
  256. WORK( J ) = WORK( J ) + CABS1( A( I, J ) ) * S( I )
  257. END DO
  258. END DO
  259. END IF
  260. * avg = s^T beta / n
  261. AVG = 0.0D0
  262. DO I = 1, N
  263. AVG = AVG + S( I )*WORK( I )
  264. END DO
  265. AVG = AVG / N
  266. STD = 0.0D0
  267. DO I = N+1, 2*N
  268. WORK( I ) = S( I-N ) * WORK( I-N ) - AVG
  269. END DO
  270. CALL ZLASSQ( N, WORK( N+1 ), 1, SCALE, SUMSQ )
  271. STD = SCALE * SQRT( SUMSQ / N )
  272. IF ( STD .LT. TOL * AVG ) GOTO 999
  273. DO I = 1, N
  274. T = CABS1( A( I, I ) )
  275. SI = S( I )
  276. C2 = ( N-1 ) * T
  277. C1 = ( N-2 ) * ( WORK( I ) - T*SI )
  278. C0 = -(T*SI)*SI + 2*WORK( I )*SI - N*AVG
  279. D = C1*C1 - 4*C0*C2
  280. IF ( D .LE. 0 ) THEN
  281. INFO = -1
  282. RETURN
  283. END IF
  284. SI = -2*C0 / ( C1 + SQRT( D ) )
  285. D = SI - S( I )
  286. U = ZERO
  287. IF ( UP ) THEN
  288. DO J = 1, I
  289. T = CABS1( A( J, I ) )
  290. U = U + S( J )*T
  291. WORK( J ) = WORK( J ) + D*T
  292. END DO
  293. DO J = I+1,N
  294. T = CABS1( A( I, J ) )
  295. U = U + S( J )*T
  296. WORK( J ) = WORK( J ) + D*T
  297. END DO
  298. ELSE
  299. DO J = 1, I
  300. T = CABS1( A( I, J ) )
  301. U = U + S( J )*T
  302. WORK( J ) = WORK( J ) + D*T
  303. END DO
  304. DO J = I+1,N
  305. T = CABS1( A( J, I ) )
  306. U = U + S( J )*T
  307. WORK( J ) = WORK( J ) + D*T
  308. END DO
  309. END IF
  310. AVG = AVG + ( U + WORK( I ) ) * D / N
  311. S( I ) = SI
  312. END DO
  313. END DO
  314. 999 CONTINUE
  315. SMLNUM = DLAMCH( 'SAFEMIN' )
  316. BIGNUM = ONE / SMLNUM
  317. SMIN = BIGNUM
  318. SMAX = ZERO
  319. T = ONE / SQRT( AVG )
  320. BASE = DLAMCH( 'B' )
  321. U = ONE / LOG( BASE )
  322. DO I = 1, N
  323. S( I ) = BASE ** INT( U * LOG( S( I ) * T ) )
  324. SMIN = MIN( SMIN, S( I ) )
  325. SMAX = MAX( SMAX, S( I ) )
  326. END DO
  327. SCOND = MAX( SMIN, SMLNUM ) / MIN( SMAX, BIGNUM )
  328. *
  329. END