You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zlanhs.f 6.2 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218
  1. *> \brief \b ZLANHS returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of an upper Hessenberg matrix.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZLANHS + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlanhs.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlanhs.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlanhs.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * DOUBLE PRECISION FUNCTION ZLANHS( NORM, N, A, LDA, WORK )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER NORM
  25. * INTEGER LDA, N
  26. * ..
  27. * .. Array Arguments ..
  28. * DOUBLE PRECISION WORK( * )
  29. * COMPLEX*16 A( LDA, * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> ZLANHS returns the value of the one norm, or the Frobenius norm, or
  39. *> the infinity norm, or the element of largest absolute value of a
  40. *> Hessenberg matrix A.
  41. *> \endverbatim
  42. *>
  43. *> \return ZLANHS
  44. *> \verbatim
  45. *>
  46. *> ZLANHS = ( max(abs(A(i,j))), NORM = 'M' or 'm'
  47. *> (
  48. *> ( norm1(A), NORM = '1', 'O' or 'o'
  49. *> (
  50. *> ( normI(A), NORM = 'I' or 'i'
  51. *> (
  52. *> ( normF(A), NORM = 'F', 'f', 'E' or 'e'
  53. *>
  54. *> where norm1 denotes the one norm of a matrix (maximum column sum),
  55. *> normI denotes the infinity norm of a matrix (maximum row sum) and
  56. *> normF denotes the Frobenius norm of a matrix (square root of sum of
  57. *> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
  58. *> \endverbatim
  59. *
  60. * Arguments:
  61. * ==========
  62. *
  63. *> \param[in] NORM
  64. *> \verbatim
  65. *> NORM is CHARACTER*1
  66. *> Specifies the value to be returned in ZLANHS as described
  67. *> above.
  68. *> \endverbatim
  69. *>
  70. *> \param[in] N
  71. *> \verbatim
  72. *> N is INTEGER
  73. *> The order of the matrix A. N >= 0. When N = 0, ZLANHS is
  74. *> set to zero.
  75. *> \endverbatim
  76. *>
  77. *> \param[in] A
  78. *> \verbatim
  79. *> A is COMPLEX*16 array, dimension (LDA,N)
  80. *> The n by n upper Hessenberg matrix A; the part of A below the
  81. *> first sub-diagonal is not referenced.
  82. *> \endverbatim
  83. *>
  84. *> \param[in] LDA
  85. *> \verbatim
  86. *> LDA is INTEGER
  87. *> The leading dimension of the array A. LDA >= max(N,1).
  88. *> \endverbatim
  89. *>
  90. *> \param[out] WORK
  91. *> \verbatim
  92. *> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
  93. *> where LWORK >= N when NORM = 'I'; otherwise, WORK is not
  94. *> referenced.
  95. *> \endverbatim
  96. *
  97. * Authors:
  98. * ========
  99. *
  100. *> \author Univ. of Tennessee
  101. *> \author Univ. of California Berkeley
  102. *> \author Univ. of Colorado Denver
  103. *> \author NAG Ltd.
  104. *
  105. *> \date December 2016
  106. *
  107. *> \ingroup complex16OTHERauxiliary
  108. *
  109. * =====================================================================
  110. DOUBLE PRECISION FUNCTION ZLANHS( NORM, N, A, LDA, WORK )
  111. *
  112. * -- LAPACK auxiliary routine (version 3.7.0) --
  113. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  114. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  115. * December 2016
  116. *
  117. IMPLICIT NONE
  118. * .. Scalar Arguments ..
  119. CHARACTER NORM
  120. INTEGER LDA, N
  121. * ..
  122. * .. Array Arguments ..
  123. DOUBLE PRECISION WORK( * )
  124. COMPLEX*16 A( LDA, * )
  125. * ..
  126. *
  127. * =====================================================================
  128. *
  129. * .. Parameters ..
  130. DOUBLE PRECISION ONE, ZERO
  131. PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  132. * ..
  133. * .. Local Scalars ..
  134. INTEGER I, J
  135. DOUBLE PRECISION SUM, VALUE
  136. * ..
  137. * .. Local Arrays ..
  138. DOUBLE PRECISION SSQ( 2 ), COLSSQ( 2 )
  139. * ..
  140. * .. External Functions ..
  141. LOGICAL LSAME, DISNAN
  142. EXTERNAL LSAME, DISNAN
  143. * ..
  144. * .. External Subroutines ..
  145. EXTERNAL ZLASSQ, DCOMBSSQ
  146. * ..
  147. * .. Intrinsic Functions ..
  148. INTRINSIC ABS, MIN, SQRT
  149. * ..
  150. * .. Executable Statements ..
  151. *
  152. IF( N.EQ.0 ) THEN
  153. VALUE = ZERO
  154. ELSE IF( LSAME( NORM, 'M' ) ) THEN
  155. *
  156. * Find max(abs(A(i,j))).
  157. *
  158. VALUE = ZERO
  159. DO 20 J = 1, N
  160. DO 10 I = 1, MIN( N, J+1 )
  161. SUM = ABS( A( I, J ) )
  162. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  163. 10 CONTINUE
  164. 20 CONTINUE
  165. ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN
  166. *
  167. * Find norm1(A).
  168. *
  169. VALUE = ZERO
  170. DO 40 J = 1, N
  171. SUM = ZERO
  172. DO 30 I = 1, MIN( N, J+1 )
  173. SUM = SUM + ABS( A( I, J ) )
  174. 30 CONTINUE
  175. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  176. 40 CONTINUE
  177. ELSE IF( LSAME( NORM, 'I' ) ) THEN
  178. *
  179. * Find normI(A).
  180. *
  181. DO 50 I = 1, N
  182. WORK( I ) = ZERO
  183. 50 CONTINUE
  184. DO 70 J = 1, N
  185. DO 60 I = 1, MIN( N, J+1 )
  186. WORK( I ) = WORK( I ) + ABS( A( I, J ) )
  187. 60 CONTINUE
  188. 70 CONTINUE
  189. VALUE = ZERO
  190. DO 80 I = 1, N
  191. SUM = WORK( I )
  192. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  193. 80 CONTINUE
  194. ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
  195. *
  196. * Find normF(A).
  197. * SSQ(1) is scale
  198. * SSQ(2) is sum-of-squares
  199. * For better accuracy, sum each column separately.
  200. *
  201. SSQ( 1 ) = ZERO
  202. SSQ( 2 ) = ONE
  203. DO 90 J = 1, N
  204. COLSSQ( 1 ) = ZERO
  205. COLSSQ( 2 ) = ONE
  206. CALL ZLASSQ( MIN( N, J+1 ), A( 1, J ), 1,
  207. $ COLSSQ( 1 ), COLSSQ( 2 ) )
  208. CALL DCOMBSSQ( SSQ, COLSSQ )
  209. 90 CONTINUE
  210. VALUE = SSQ( 1 )*SQRT( SSQ( 2 ) )
  211. END IF
  212. *
  213. ZLANHS = VALUE
  214. RETURN
  215. *
  216. * End of ZLANHS
  217. *
  218. END