You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zcposv.f 14 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457
  1. *> \brief <b> ZCPOSV computes the solution to system of linear equations A * X = B for PO matrices</b>
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZCPOSV + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zcposv.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zcposv.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zcposv.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZCPOSV( UPLO, N, NRHS, A, LDA, B, LDB, X, LDX, WORK,
  22. * SWORK, RWORK, ITER, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER UPLO
  26. * INTEGER INFO, ITER, LDA, LDB, LDX, N, NRHS
  27. * ..
  28. * .. Array Arguments ..
  29. * DOUBLE PRECISION RWORK( * )
  30. * COMPLEX SWORK( * )
  31. * COMPLEX*16 A( LDA, * ), B( LDB, * ), WORK( N, * ),
  32. * $ X( LDX, * )
  33. * ..
  34. *
  35. *
  36. *> \par Purpose:
  37. * =============
  38. *>
  39. *> \verbatim
  40. *>
  41. *> ZCPOSV computes the solution to a complex system of linear equations
  42. *> A * X = B,
  43. *> where A is an N-by-N Hermitian positive definite matrix and X and B
  44. *> are N-by-NRHS matrices.
  45. *>
  46. *> ZCPOSV first attempts to factorize the matrix in COMPLEX and use this
  47. *> factorization within an iterative refinement procedure to produce a
  48. *> solution with COMPLEX*16 normwise backward error quality (see below).
  49. *> If the approach fails the method switches to a COMPLEX*16
  50. *> factorization and solve.
  51. *>
  52. *> The iterative refinement is not going to be a winning strategy if
  53. *> the ratio COMPLEX performance over COMPLEX*16 performance is too
  54. *> small. A reasonable strategy should take the number of right-hand
  55. *> sides and the size of the matrix into account. This might be done
  56. *> with a call to ILAENV in the future. Up to now, we always try
  57. *> iterative refinement.
  58. *>
  59. *> The iterative refinement process is stopped if
  60. *> ITER > ITERMAX
  61. *> or for all the RHS we have:
  62. *> RNRM < SQRT(N)*XNRM*ANRM*EPS*BWDMAX
  63. *> where
  64. *> o ITER is the number of the current iteration in the iterative
  65. *> refinement process
  66. *> o RNRM is the infinity-norm of the residual
  67. *> o XNRM is the infinity-norm of the solution
  68. *> o ANRM is the infinity-operator-norm of the matrix A
  69. *> o EPS is the machine epsilon returned by DLAMCH('Epsilon')
  70. *> The value ITERMAX and BWDMAX are fixed to 30 and 1.0D+00
  71. *> respectively.
  72. *> \endverbatim
  73. *
  74. * Arguments:
  75. * ==========
  76. *
  77. *> \param[in] UPLO
  78. *> \verbatim
  79. *> UPLO is CHARACTER*1
  80. *> = 'U': Upper triangle of A is stored;
  81. *> = 'L': Lower triangle of A is stored.
  82. *> \endverbatim
  83. *>
  84. *> \param[in] N
  85. *> \verbatim
  86. *> N is INTEGER
  87. *> The number of linear equations, i.e., the order of the
  88. *> matrix A. N >= 0.
  89. *> \endverbatim
  90. *>
  91. *> \param[in] NRHS
  92. *> \verbatim
  93. *> NRHS is INTEGER
  94. *> The number of right hand sides, i.e., the number of columns
  95. *> of the matrix B. NRHS >= 0.
  96. *> \endverbatim
  97. *>
  98. *> \param[in,out] A
  99. *> \verbatim
  100. *> A is COMPLEX*16 array,
  101. *> dimension (LDA,N)
  102. *> On entry, the Hermitian matrix A. If UPLO = 'U', the leading
  103. *> N-by-N upper triangular part of A contains the upper
  104. *> triangular part of the matrix A, and the strictly lower
  105. *> triangular part of A is not referenced. If UPLO = 'L', the
  106. *> leading N-by-N lower triangular part of A contains the lower
  107. *> triangular part of the matrix A, and the strictly upper
  108. *> triangular part of A is not referenced.
  109. *>
  110. *> Note that the imaginary parts of the diagonal
  111. *> elements need not be set and are assumed to be zero.
  112. *>
  113. *> On exit, if iterative refinement has been successfully used
  114. *> (INFO = 0 and ITER >= 0, see description below), then A is
  115. *> unchanged, if double precision factorization has been used
  116. *> (INFO = 0 and ITER < 0, see description below), then the
  117. *> array A contains the factor U or L from the Cholesky
  118. *> factorization A = U**H*U or A = L*L**H.
  119. *> \endverbatim
  120. *>
  121. *> \param[in] LDA
  122. *> \verbatim
  123. *> LDA is INTEGER
  124. *> The leading dimension of the array A. LDA >= max(1,N).
  125. *> \endverbatim
  126. *>
  127. *> \param[in] B
  128. *> \verbatim
  129. *> B is COMPLEX*16 array, dimension (LDB,NRHS)
  130. *> The N-by-NRHS right hand side matrix B.
  131. *> \endverbatim
  132. *>
  133. *> \param[in] LDB
  134. *> \verbatim
  135. *> LDB is INTEGER
  136. *> The leading dimension of the array B. LDB >= max(1,N).
  137. *> \endverbatim
  138. *>
  139. *> \param[out] X
  140. *> \verbatim
  141. *> X is COMPLEX*16 array, dimension (LDX,NRHS)
  142. *> If INFO = 0, the N-by-NRHS solution matrix X.
  143. *> \endverbatim
  144. *>
  145. *> \param[in] LDX
  146. *> \verbatim
  147. *> LDX is INTEGER
  148. *> The leading dimension of the array X. LDX >= max(1,N).
  149. *> \endverbatim
  150. *>
  151. *> \param[out] WORK
  152. *> \verbatim
  153. *> WORK is COMPLEX*16 array, dimension (N,NRHS)
  154. *> This array is used to hold the residual vectors.
  155. *> \endverbatim
  156. *>
  157. *> \param[out] SWORK
  158. *> \verbatim
  159. *> SWORK is COMPLEX array, dimension (N*(N+NRHS))
  160. *> This array is used to use the single precision matrix and the
  161. *> right-hand sides or solutions in single precision.
  162. *> \endverbatim
  163. *>
  164. *> \param[out] RWORK
  165. *> \verbatim
  166. *> RWORK is DOUBLE PRECISION array, dimension (N)
  167. *> \endverbatim
  168. *>
  169. *> \param[out] ITER
  170. *> \verbatim
  171. *> ITER is INTEGER
  172. *> < 0: iterative refinement has failed, COMPLEX*16
  173. *> factorization has been performed
  174. *> -1 : the routine fell back to full precision for
  175. *> implementation- or machine-specific reasons
  176. *> -2 : narrowing the precision induced an overflow,
  177. *> the routine fell back to full precision
  178. *> -3 : failure of CPOTRF
  179. *> -31: stop the iterative refinement after the 30th
  180. *> iterations
  181. *> > 0: iterative refinement has been successfully used.
  182. *> Returns the number of iterations
  183. *> \endverbatim
  184. *>
  185. *> \param[out] INFO
  186. *> \verbatim
  187. *> INFO is INTEGER
  188. *> = 0: successful exit
  189. *> < 0: if INFO = -i, the i-th argument had an illegal value
  190. *> > 0: if INFO = i, the leading minor of order i of
  191. *> (COMPLEX*16) A is not positive definite, so the
  192. *> factorization could not be completed, and the solution
  193. *> has not been computed.
  194. *> \endverbatim
  195. *
  196. * Authors:
  197. * ========
  198. *
  199. *> \author Univ. of Tennessee
  200. *> \author Univ. of California Berkeley
  201. *> \author Univ. of Colorado Denver
  202. *> \author NAG Ltd.
  203. *
  204. *> \date June 2016
  205. *
  206. *> \ingroup complex16POsolve
  207. *
  208. * =====================================================================
  209. SUBROUTINE ZCPOSV( UPLO, N, NRHS, A, LDA, B, LDB, X, LDX, WORK,
  210. $ SWORK, RWORK, ITER, INFO )
  211. *
  212. * -- LAPACK driver routine (version 3.8.0) --
  213. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  214. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  215. * June 2016
  216. *
  217. * .. Scalar Arguments ..
  218. CHARACTER UPLO
  219. INTEGER INFO, ITER, LDA, LDB, LDX, N, NRHS
  220. * ..
  221. * .. Array Arguments ..
  222. DOUBLE PRECISION RWORK( * )
  223. COMPLEX SWORK( * )
  224. COMPLEX*16 A( LDA, * ), B( LDB, * ), WORK( N, * ),
  225. $ X( LDX, * )
  226. * ..
  227. *
  228. * =====================================================================
  229. *
  230. * .. Parameters ..
  231. LOGICAL DOITREF
  232. PARAMETER ( DOITREF = .TRUE. )
  233. *
  234. INTEGER ITERMAX
  235. PARAMETER ( ITERMAX = 30 )
  236. *
  237. DOUBLE PRECISION BWDMAX
  238. PARAMETER ( BWDMAX = 1.0E+00 )
  239. *
  240. COMPLEX*16 NEGONE, ONE
  241. PARAMETER ( NEGONE = ( -1.0D+00, 0.0D+00 ),
  242. $ ONE = ( 1.0D+00, 0.0D+00 ) )
  243. *
  244. * .. Local Scalars ..
  245. INTEGER I, IITER, PTSA, PTSX
  246. DOUBLE PRECISION ANRM, CTE, EPS, RNRM, XNRM
  247. COMPLEX*16 ZDUM
  248. *
  249. * .. External Subroutines ..
  250. EXTERNAL ZAXPY, ZHEMM, ZLACPY, ZLAT2C, ZLAG2C, CLAG2Z,
  251. $ CPOTRF, CPOTRS, XERBLA, ZPOTRF, ZPOTRS
  252. * ..
  253. * .. External Functions ..
  254. INTEGER IZAMAX
  255. DOUBLE PRECISION DLAMCH, ZLANHE
  256. LOGICAL LSAME
  257. EXTERNAL IZAMAX, DLAMCH, ZLANHE, LSAME
  258. * ..
  259. * .. Intrinsic Functions ..
  260. INTRINSIC ABS, DBLE, MAX, SQRT
  261. * .. Statement Functions ..
  262. DOUBLE PRECISION CABS1
  263. * ..
  264. * .. Statement Function definitions ..
  265. CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
  266. * ..
  267. * .. Executable Statements ..
  268. *
  269. INFO = 0
  270. ITER = 0
  271. *
  272. * Test the input parameters.
  273. *
  274. IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  275. INFO = -1
  276. ELSE IF( N.LT.0 ) THEN
  277. INFO = -2
  278. ELSE IF( NRHS.LT.0 ) THEN
  279. INFO = -3
  280. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  281. INFO = -5
  282. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  283. INFO = -7
  284. ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  285. INFO = -9
  286. END IF
  287. IF( INFO.NE.0 ) THEN
  288. CALL XERBLA( 'ZCPOSV', -INFO )
  289. RETURN
  290. END IF
  291. *
  292. * Quick return if (N.EQ.0).
  293. *
  294. IF( N.EQ.0 )
  295. $ RETURN
  296. *
  297. * Skip single precision iterative refinement if a priori slower
  298. * than double precision factorization.
  299. *
  300. IF( .NOT.DOITREF ) THEN
  301. ITER = -1
  302. GO TO 40
  303. END IF
  304. *
  305. * Compute some constants.
  306. *
  307. ANRM = ZLANHE( 'I', UPLO, N, A, LDA, RWORK )
  308. EPS = DLAMCH( 'Epsilon' )
  309. CTE = ANRM*EPS*SQRT( DBLE( N ) )*BWDMAX
  310. *
  311. * Set the indices PTSA, PTSX for referencing SA and SX in SWORK.
  312. *
  313. PTSA = 1
  314. PTSX = PTSA + N*N
  315. *
  316. * Convert B from double precision to single precision and store the
  317. * result in SX.
  318. *
  319. CALL ZLAG2C( N, NRHS, B, LDB, SWORK( PTSX ), N, INFO )
  320. *
  321. IF( INFO.NE.0 ) THEN
  322. ITER = -2
  323. GO TO 40
  324. END IF
  325. *
  326. * Convert A from double precision to single precision and store the
  327. * result in SA.
  328. *
  329. CALL ZLAT2C( UPLO, N, A, LDA, SWORK( PTSA ), N, INFO )
  330. *
  331. IF( INFO.NE.0 ) THEN
  332. ITER = -2
  333. GO TO 40
  334. END IF
  335. *
  336. * Compute the Cholesky factorization of SA.
  337. *
  338. CALL CPOTRF( UPLO, N, SWORK( PTSA ), N, INFO )
  339. *
  340. IF( INFO.NE.0 ) THEN
  341. ITER = -3
  342. GO TO 40
  343. END IF
  344. *
  345. * Solve the system SA*SX = SB.
  346. *
  347. CALL CPOTRS( UPLO, N, NRHS, SWORK( PTSA ), N, SWORK( PTSX ), N,
  348. $ INFO )
  349. *
  350. * Convert SX back to COMPLEX*16
  351. *
  352. CALL CLAG2Z( N, NRHS, SWORK( PTSX ), N, X, LDX, INFO )
  353. *
  354. * Compute R = B - AX (R is WORK).
  355. *
  356. CALL ZLACPY( 'All', N, NRHS, B, LDB, WORK, N )
  357. *
  358. CALL ZHEMM( 'Left', UPLO, N, NRHS, NEGONE, A, LDA, X, LDX, ONE,
  359. $ WORK, N )
  360. *
  361. * Check whether the NRHS normwise backward errors satisfy the
  362. * stopping criterion. If yes, set ITER=0 and return.
  363. *
  364. DO I = 1, NRHS
  365. XNRM = CABS1( X( IZAMAX( N, X( 1, I ), 1 ), I ) )
  366. RNRM = CABS1( WORK( IZAMAX( N, WORK( 1, I ), 1 ), I ) )
  367. IF( RNRM.GT.XNRM*CTE )
  368. $ GO TO 10
  369. END DO
  370. *
  371. * If we are here, the NRHS normwise backward errors satisfy the
  372. * stopping criterion. We are good to exit.
  373. *
  374. ITER = 0
  375. RETURN
  376. *
  377. 10 CONTINUE
  378. *
  379. DO 30 IITER = 1, ITERMAX
  380. *
  381. * Convert R (in WORK) from double precision to single precision
  382. * and store the result in SX.
  383. *
  384. CALL ZLAG2C( N, NRHS, WORK, N, SWORK( PTSX ), N, INFO )
  385. *
  386. IF( INFO.NE.0 ) THEN
  387. ITER = -2
  388. GO TO 40
  389. END IF
  390. *
  391. * Solve the system SA*SX = SR.
  392. *
  393. CALL CPOTRS( UPLO, N, NRHS, SWORK( PTSA ), N, SWORK( PTSX ), N,
  394. $ INFO )
  395. *
  396. * Convert SX back to double precision and update the current
  397. * iterate.
  398. *
  399. CALL CLAG2Z( N, NRHS, SWORK( PTSX ), N, WORK, N, INFO )
  400. *
  401. DO I = 1, NRHS
  402. CALL ZAXPY( N, ONE, WORK( 1, I ), 1, X( 1, I ), 1 )
  403. END DO
  404. *
  405. * Compute R = B - AX (R is WORK).
  406. *
  407. CALL ZLACPY( 'All', N, NRHS, B, LDB, WORK, N )
  408. *
  409. CALL ZHEMM( 'L', UPLO, N, NRHS, NEGONE, A, LDA, X, LDX, ONE,
  410. $ WORK, N )
  411. *
  412. * Check whether the NRHS normwise backward errors satisfy the
  413. * stopping criterion. If yes, set ITER=IITER>0 and return.
  414. *
  415. DO I = 1, NRHS
  416. XNRM = CABS1( X( IZAMAX( N, X( 1, I ), 1 ), I ) )
  417. RNRM = CABS1( WORK( IZAMAX( N, WORK( 1, I ), 1 ), I ) )
  418. IF( RNRM.GT.XNRM*CTE )
  419. $ GO TO 20
  420. END DO
  421. *
  422. * If we are here, the NRHS normwise backward errors satisfy the
  423. * stopping criterion, we are good to exit.
  424. *
  425. ITER = IITER
  426. *
  427. RETURN
  428. *
  429. 20 CONTINUE
  430. *
  431. 30 CONTINUE
  432. *
  433. * If we are at this place of the code, this is because we have
  434. * performed ITER=ITERMAX iterations and never satisfied the
  435. * stopping criterion, set up the ITER flag accordingly and follow
  436. * up on double precision routine.
  437. *
  438. ITER = -ITERMAX - 1
  439. *
  440. 40 CONTINUE
  441. *
  442. * Single-precision iterative refinement failed to converge to a
  443. * satisfactory solution, so we resort to double precision.
  444. *
  445. CALL ZPOTRF( UPLO, N, A, LDA, INFO )
  446. *
  447. IF( INFO.NE.0 )
  448. $ RETURN
  449. *
  450. CALL ZLACPY( 'All', N, NRHS, B, LDB, X, LDX )
  451. CALL ZPOTRS( UPLO, N, NRHS, A, LDA, X, LDX, INFO )
  452. *
  453. RETURN
  454. *
  455. * End of ZCPOSV.
  456. *
  457. END