You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zcgesv.f 14 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448
  1. *> \brief <b> ZCGESV computes the solution to system of linear equations A * X = B for GE matrices</b> (mixed precision with iterative refinement)
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZCGESV + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zcgesv.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zcgesv.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zcgesv.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZCGESV( N, NRHS, A, LDA, IPIV, B, LDB, X, LDX, WORK,
  22. * SWORK, RWORK, ITER, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * INTEGER INFO, ITER, LDA, LDB, LDX, N, NRHS
  26. * ..
  27. * .. Array Arguments ..
  28. * INTEGER IPIV( * )
  29. * DOUBLE PRECISION RWORK( * )
  30. * COMPLEX SWORK( * )
  31. * COMPLEX*16 A( LDA, * ), B( LDB, * ), WORK( N, * ),
  32. * $ X( LDX, * )
  33. * ..
  34. *
  35. *
  36. *> \par Purpose:
  37. * =============
  38. *>
  39. *> \verbatim
  40. *>
  41. *> ZCGESV computes the solution to a complex system of linear equations
  42. *> A * X = B,
  43. *> where A is an N-by-N matrix and X and B are N-by-NRHS matrices.
  44. *>
  45. *> ZCGESV first attempts to factorize the matrix in COMPLEX and use this
  46. *> factorization within an iterative refinement procedure to produce a
  47. *> solution with COMPLEX*16 normwise backward error quality (see below).
  48. *> If the approach fails the method switches to a COMPLEX*16
  49. *> factorization and solve.
  50. *>
  51. *> The iterative refinement is not going to be a winning strategy if
  52. *> the ratio COMPLEX performance over COMPLEX*16 performance is too
  53. *> small. A reasonable strategy should take the number of right-hand
  54. *> sides and the size of the matrix into account. This might be done
  55. *> with a call to ILAENV in the future. Up to now, we always try
  56. *> iterative refinement.
  57. *>
  58. *> The iterative refinement process is stopped if
  59. *> ITER > ITERMAX
  60. *> or for all the RHS we have:
  61. *> RNRM < SQRT(N)*XNRM*ANRM*EPS*BWDMAX
  62. *> where
  63. *> o ITER is the number of the current iteration in the iterative
  64. *> refinement process
  65. *> o RNRM is the infinity-norm of the residual
  66. *> o XNRM is the infinity-norm of the solution
  67. *> o ANRM is the infinity-operator-norm of the matrix A
  68. *> o EPS is the machine epsilon returned by DLAMCH('Epsilon')
  69. *> The value ITERMAX and BWDMAX are fixed to 30 and 1.0D+00
  70. *> respectively.
  71. *> \endverbatim
  72. *
  73. * Arguments:
  74. * ==========
  75. *
  76. *> \param[in] N
  77. *> \verbatim
  78. *> N is INTEGER
  79. *> The number of linear equations, i.e., the order of the
  80. *> matrix A. N >= 0.
  81. *> \endverbatim
  82. *>
  83. *> \param[in] NRHS
  84. *> \verbatim
  85. *> NRHS is INTEGER
  86. *> The number of right hand sides, i.e., the number of columns
  87. *> of the matrix B. NRHS >= 0.
  88. *> \endverbatim
  89. *>
  90. *> \param[in,out] A
  91. *> \verbatim
  92. *> A is COMPLEX*16 array,
  93. *> dimension (LDA,N)
  94. *> On entry, the N-by-N coefficient matrix A.
  95. *> On exit, if iterative refinement has been successfully used
  96. *> (INFO = 0 and ITER >= 0, see description below), then A is
  97. *> unchanged, if double precision factorization has been used
  98. *> (INFO = 0 and ITER < 0, see description below), then the
  99. *> array A contains the factors L and U from the factorization
  100. *> A = P*L*U; the unit diagonal elements of L are not stored.
  101. *> \endverbatim
  102. *>
  103. *> \param[in] LDA
  104. *> \verbatim
  105. *> LDA is INTEGER
  106. *> The leading dimension of the array A. LDA >= max(1,N).
  107. *> \endverbatim
  108. *>
  109. *> \param[out] IPIV
  110. *> \verbatim
  111. *> IPIV is INTEGER array, dimension (N)
  112. *> The pivot indices that define the permutation matrix P;
  113. *> row i of the matrix was interchanged with row IPIV(i).
  114. *> Corresponds either to the single precision factorization
  115. *> (if INFO = 0 and ITER >= 0) or the double precision
  116. *> factorization (if INFO = 0 and ITER < 0).
  117. *> \endverbatim
  118. *>
  119. *> \param[in] B
  120. *> \verbatim
  121. *> B is COMPLEX*16 array, dimension (LDB,NRHS)
  122. *> The N-by-NRHS right hand side matrix B.
  123. *> \endverbatim
  124. *>
  125. *> \param[in] LDB
  126. *> \verbatim
  127. *> LDB is INTEGER
  128. *> The leading dimension of the array B. LDB >= max(1,N).
  129. *> \endverbatim
  130. *>
  131. *> \param[out] X
  132. *> \verbatim
  133. *> X is COMPLEX*16 array, dimension (LDX,NRHS)
  134. *> If INFO = 0, the N-by-NRHS solution matrix X.
  135. *> \endverbatim
  136. *>
  137. *> \param[in] LDX
  138. *> \verbatim
  139. *> LDX is INTEGER
  140. *> The leading dimension of the array X. LDX >= max(1,N).
  141. *> \endverbatim
  142. *>
  143. *> \param[out] WORK
  144. *> \verbatim
  145. *> WORK is COMPLEX*16 array, dimension (N,NRHS)
  146. *> This array is used to hold the residual vectors.
  147. *> \endverbatim
  148. *>
  149. *> \param[out] SWORK
  150. *> \verbatim
  151. *> SWORK is COMPLEX array, dimension (N*(N+NRHS))
  152. *> This array is used to use the single precision matrix and the
  153. *> right-hand sides or solutions in single precision.
  154. *> \endverbatim
  155. *>
  156. *> \param[out] RWORK
  157. *> \verbatim
  158. *> RWORK is DOUBLE PRECISION array, dimension (N)
  159. *> \endverbatim
  160. *>
  161. *> \param[out] ITER
  162. *> \verbatim
  163. *> ITER is INTEGER
  164. *> < 0: iterative refinement has failed, COMPLEX*16
  165. *> factorization has been performed
  166. *> -1 : the routine fell back to full precision for
  167. *> implementation- or machine-specific reasons
  168. *> -2 : narrowing the precision induced an overflow,
  169. *> the routine fell back to full precision
  170. *> -3 : failure of CGETRF
  171. *> -31: stop the iterative refinement after the 30th
  172. *> iterations
  173. *> > 0: iterative refinement has been successfully used.
  174. *> Returns the number of iterations
  175. *> \endverbatim
  176. *>
  177. *> \param[out] INFO
  178. *> \verbatim
  179. *> INFO is INTEGER
  180. *> = 0: successful exit
  181. *> < 0: if INFO = -i, the i-th argument had an illegal value
  182. *> > 0: if INFO = i, U(i,i) computed in COMPLEX*16 is exactly
  183. *> zero. The factorization has been completed, but the
  184. *> factor U is exactly singular, so the solution
  185. *> could not be computed.
  186. *> \endverbatim
  187. *
  188. * Authors:
  189. * ========
  190. *
  191. *> \author Univ. of Tennessee
  192. *> \author Univ. of California Berkeley
  193. *> \author Univ. of Colorado Denver
  194. *> \author NAG Ltd.
  195. *
  196. *> \date June 2016
  197. *
  198. *> \ingroup complex16GEsolve
  199. *
  200. * =====================================================================
  201. SUBROUTINE ZCGESV( N, NRHS, A, LDA, IPIV, B, LDB, X, LDX, WORK,
  202. $ SWORK, RWORK, ITER, INFO )
  203. *
  204. * -- LAPACK driver routine (version 3.8.0) --
  205. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  206. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  207. * June 2016
  208. *
  209. * .. Scalar Arguments ..
  210. INTEGER INFO, ITER, LDA, LDB, LDX, N, NRHS
  211. * ..
  212. * .. Array Arguments ..
  213. INTEGER IPIV( * )
  214. DOUBLE PRECISION RWORK( * )
  215. COMPLEX SWORK( * )
  216. COMPLEX*16 A( LDA, * ), B( LDB, * ), WORK( N, * ),
  217. $ X( LDX, * )
  218. * ..
  219. *
  220. * =====================================================================
  221. *
  222. * .. Parameters ..
  223. LOGICAL DOITREF
  224. PARAMETER ( DOITREF = .TRUE. )
  225. *
  226. INTEGER ITERMAX
  227. PARAMETER ( ITERMAX = 30 )
  228. *
  229. DOUBLE PRECISION BWDMAX
  230. PARAMETER ( BWDMAX = 1.0E+00 )
  231. *
  232. COMPLEX*16 NEGONE, ONE
  233. PARAMETER ( NEGONE = ( -1.0D+00, 0.0D+00 ),
  234. $ ONE = ( 1.0D+00, 0.0D+00 ) )
  235. *
  236. * .. Local Scalars ..
  237. INTEGER I, IITER, PTSA, PTSX
  238. DOUBLE PRECISION ANRM, CTE, EPS, RNRM, XNRM
  239. COMPLEX*16 ZDUM
  240. *
  241. * .. External Subroutines ..
  242. EXTERNAL CGETRS, CGETRF, CLAG2Z, XERBLA, ZAXPY, ZGEMM,
  243. $ ZLACPY, ZLAG2C, ZGETRF, ZGETRS
  244. * ..
  245. * .. External Functions ..
  246. INTEGER IZAMAX
  247. DOUBLE PRECISION DLAMCH, ZLANGE
  248. EXTERNAL IZAMAX, DLAMCH, ZLANGE
  249. * ..
  250. * .. Intrinsic Functions ..
  251. INTRINSIC ABS, DBLE, MAX, SQRT
  252. * ..
  253. * .. Statement Functions ..
  254. DOUBLE PRECISION CABS1
  255. * ..
  256. * .. Statement Function definitions ..
  257. CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
  258. * ..
  259. * .. Executable Statements ..
  260. *
  261. INFO = 0
  262. ITER = 0
  263. *
  264. * Test the input parameters.
  265. *
  266. IF( N.LT.0 ) THEN
  267. INFO = -1
  268. ELSE IF( NRHS.LT.0 ) THEN
  269. INFO = -2
  270. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  271. INFO = -4
  272. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  273. INFO = -7
  274. ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  275. INFO = -9
  276. END IF
  277. IF( INFO.NE.0 ) THEN
  278. CALL XERBLA( 'ZCGESV', -INFO )
  279. RETURN
  280. END IF
  281. *
  282. * Quick return if (N.EQ.0).
  283. *
  284. IF( N.EQ.0 )
  285. $ RETURN
  286. *
  287. * Skip single precision iterative refinement if a priori slower
  288. * than double precision factorization.
  289. *
  290. IF( .NOT.DOITREF ) THEN
  291. ITER = -1
  292. GO TO 40
  293. END IF
  294. *
  295. * Compute some constants.
  296. *
  297. ANRM = ZLANGE( 'I', N, N, A, LDA, RWORK )
  298. EPS = DLAMCH( 'Epsilon' )
  299. CTE = ANRM*EPS*SQRT( DBLE( N ) )*BWDMAX
  300. *
  301. * Set the indices PTSA, PTSX for referencing SA and SX in SWORK.
  302. *
  303. PTSA = 1
  304. PTSX = PTSA + N*N
  305. *
  306. * Convert B from double precision to single precision and store the
  307. * result in SX.
  308. *
  309. CALL ZLAG2C( N, NRHS, B, LDB, SWORK( PTSX ), N, INFO )
  310. *
  311. IF( INFO.NE.0 ) THEN
  312. ITER = -2
  313. GO TO 40
  314. END IF
  315. *
  316. * Convert A from double precision to single precision and store the
  317. * result in SA.
  318. *
  319. CALL ZLAG2C( N, N, A, LDA, SWORK( PTSA ), N, INFO )
  320. *
  321. IF( INFO.NE.0 ) THEN
  322. ITER = -2
  323. GO TO 40
  324. END IF
  325. *
  326. * Compute the LU factorization of SA.
  327. *
  328. CALL CGETRF( N, N, SWORK( PTSA ), N, IPIV, INFO )
  329. *
  330. IF( INFO.NE.0 ) THEN
  331. ITER = -3
  332. GO TO 40
  333. END IF
  334. *
  335. * Solve the system SA*SX = SB.
  336. *
  337. CALL CGETRS( 'No transpose', N, NRHS, SWORK( PTSA ), N, IPIV,
  338. $ SWORK( PTSX ), N, INFO )
  339. *
  340. * Convert SX back to double precision
  341. *
  342. CALL CLAG2Z( N, NRHS, SWORK( PTSX ), N, X, LDX, INFO )
  343. *
  344. * Compute R = B - AX (R is WORK).
  345. *
  346. CALL ZLACPY( 'All', N, NRHS, B, LDB, WORK, N )
  347. *
  348. CALL ZGEMM( 'No Transpose', 'No Transpose', N, NRHS, N, NEGONE, A,
  349. $ LDA, X, LDX, ONE, WORK, N )
  350. *
  351. * Check whether the NRHS normwise backward errors satisfy the
  352. * stopping criterion. If yes, set ITER=0 and return.
  353. *
  354. DO I = 1, NRHS
  355. XNRM = CABS1( X( IZAMAX( N, X( 1, I ), 1 ), I ) )
  356. RNRM = CABS1( WORK( IZAMAX( N, WORK( 1, I ), 1 ), I ) )
  357. IF( RNRM.GT.XNRM*CTE )
  358. $ GO TO 10
  359. END DO
  360. *
  361. * If we are here, the NRHS normwise backward errors satisfy the
  362. * stopping criterion. We are good to exit.
  363. *
  364. ITER = 0
  365. RETURN
  366. *
  367. 10 CONTINUE
  368. *
  369. DO 30 IITER = 1, ITERMAX
  370. *
  371. * Convert R (in WORK) from double precision to single precision
  372. * and store the result in SX.
  373. *
  374. CALL ZLAG2C( N, NRHS, WORK, N, SWORK( PTSX ), N, INFO )
  375. *
  376. IF( INFO.NE.0 ) THEN
  377. ITER = -2
  378. GO TO 40
  379. END IF
  380. *
  381. * Solve the system SA*SX = SR.
  382. *
  383. CALL CGETRS( 'No transpose', N, NRHS, SWORK( PTSA ), N, IPIV,
  384. $ SWORK( PTSX ), N, INFO )
  385. *
  386. * Convert SX back to double precision and update the current
  387. * iterate.
  388. *
  389. CALL CLAG2Z( N, NRHS, SWORK( PTSX ), N, WORK, N, INFO )
  390. *
  391. DO I = 1, NRHS
  392. CALL ZAXPY( N, ONE, WORK( 1, I ), 1, X( 1, I ), 1 )
  393. END DO
  394. *
  395. * Compute R = B - AX (R is WORK).
  396. *
  397. CALL ZLACPY( 'All', N, NRHS, B, LDB, WORK, N )
  398. *
  399. CALL ZGEMM( 'No Transpose', 'No Transpose', N, NRHS, N, NEGONE,
  400. $ A, LDA, X, LDX, ONE, WORK, N )
  401. *
  402. * Check whether the NRHS normwise backward errors satisfy the
  403. * stopping criterion. If yes, set ITER=IITER>0 and return.
  404. *
  405. DO I = 1, NRHS
  406. XNRM = CABS1( X( IZAMAX( N, X( 1, I ), 1 ), I ) )
  407. RNRM = CABS1( WORK( IZAMAX( N, WORK( 1, I ), 1 ), I ) )
  408. IF( RNRM.GT.XNRM*CTE )
  409. $ GO TO 20
  410. END DO
  411. *
  412. * If we are here, the NRHS normwise backward errors satisfy the
  413. * stopping criterion, we are good to exit.
  414. *
  415. ITER = IITER
  416. *
  417. RETURN
  418. *
  419. 20 CONTINUE
  420. *
  421. 30 CONTINUE
  422. *
  423. * If we are at this place of the code, this is because we have
  424. * performed ITER=ITERMAX iterations and never satisfied the stopping
  425. * criterion, set up the ITER flag accordingly and follow up on double
  426. * precision routine.
  427. *
  428. ITER = -ITERMAX - 1
  429. *
  430. 40 CONTINUE
  431. *
  432. * Single-precision iterative refinement failed to converge to a
  433. * satisfactory solution, so we resort to double precision.
  434. *
  435. CALL ZGETRF( N, N, A, LDA, IPIV, INFO )
  436. *
  437. IF( INFO.NE.0 )
  438. $ RETURN
  439. *
  440. CALL ZLACPY( 'All', N, NRHS, B, LDB, X, LDX )
  441. CALL ZGETRS( 'No transpose', N, NRHS, A, LDA, IPIV, X, LDX,
  442. $ INFO )
  443. *
  444. RETURN
  445. *
  446. * End of ZCGESV.
  447. *
  448. END