You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ssysvx.f 14 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416
  1. *> \brief <b> SSYSVX computes the solution to system of linear equations A * X = B for SY matrices</b>
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SSYSVX + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssysvx.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssysvx.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssysvx.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE SSYSVX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B,
  22. * LDB, X, LDX, RCOND, FERR, BERR, WORK, LWORK,
  23. * IWORK, INFO )
  24. *
  25. * .. Scalar Arguments ..
  26. * CHARACTER FACT, UPLO
  27. * INTEGER INFO, LDA, LDAF, LDB, LDX, LWORK, N, NRHS
  28. * REAL RCOND
  29. * ..
  30. * .. Array Arguments ..
  31. * INTEGER IPIV( * ), IWORK( * )
  32. * REAL A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
  33. * $ BERR( * ), FERR( * ), WORK( * ), X( LDX, * )
  34. * ..
  35. *
  36. *
  37. *> \par Purpose:
  38. * =============
  39. *>
  40. *> \verbatim
  41. *>
  42. *> SSYSVX uses the diagonal pivoting factorization to compute the
  43. *> solution to a real system of linear equations A * X = B,
  44. *> where A is an N-by-N symmetric matrix and X and B are N-by-NRHS
  45. *> matrices.
  46. *>
  47. *> Error bounds on the solution and a condition estimate are also
  48. *> provided.
  49. *> \endverbatim
  50. *
  51. *> \par Description:
  52. * =================
  53. *>
  54. *> \verbatim
  55. *>
  56. *> The following steps are performed:
  57. *>
  58. *> 1. If FACT = 'N', the diagonal pivoting method is used to factor A.
  59. *> The form of the factorization is
  60. *> A = U * D * U**T, if UPLO = 'U', or
  61. *> A = L * D * L**T, if UPLO = 'L',
  62. *> where U (or L) is a product of permutation and unit upper (lower)
  63. *> triangular matrices, and D is symmetric and block diagonal with
  64. *> 1-by-1 and 2-by-2 diagonal blocks.
  65. *>
  66. *> 2. If some D(i,i)=0, so that D is exactly singular, then the routine
  67. *> returns with INFO = i. Otherwise, the factored form of A is used
  68. *> to estimate the condition number of the matrix A. If the
  69. *> reciprocal of the condition number is less than machine precision,
  70. *> INFO = N+1 is returned as a warning, but the routine still goes on
  71. *> to solve for X and compute error bounds as described below.
  72. *>
  73. *> 3. The system of equations is solved for X using the factored form
  74. *> of A.
  75. *>
  76. *> 4. Iterative refinement is applied to improve the computed solution
  77. *> matrix and calculate error bounds and backward error estimates
  78. *> for it.
  79. *> \endverbatim
  80. *
  81. * Arguments:
  82. * ==========
  83. *
  84. *> \param[in] FACT
  85. *> \verbatim
  86. *> FACT is CHARACTER*1
  87. *> Specifies whether or not the factored form of A has been
  88. *> supplied on entry.
  89. *> = 'F': On entry, AF and IPIV contain the factored form of
  90. *> A. AF and IPIV will not be modified.
  91. *> = 'N': The matrix A will be copied to AF and factored.
  92. *> \endverbatim
  93. *>
  94. *> \param[in] UPLO
  95. *> \verbatim
  96. *> UPLO is CHARACTER*1
  97. *> = 'U': Upper triangle of A is stored;
  98. *> = 'L': Lower triangle of A is stored.
  99. *> \endverbatim
  100. *>
  101. *> \param[in] N
  102. *> \verbatim
  103. *> N is INTEGER
  104. *> The number of linear equations, i.e., the order of the
  105. *> matrix A. N >= 0.
  106. *> \endverbatim
  107. *>
  108. *> \param[in] NRHS
  109. *> \verbatim
  110. *> NRHS is INTEGER
  111. *> The number of right hand sides, i.e., the number of columns
  112. *> of the matrices B and X. NRHS >= 0.
  113. *> \endverbatim
  114. *>
  115. *> \param[in] A
  116. *> \verbatim
  117. *> A is REAL array, dimension (LDA,N)
  118. *> The symmetric matrix A. If UPLO = 'U', the leading N-by-N
  119. *> upper triangular part of A contains the upper triangular part
  120. *> of the matrix A, and the strictly lower triangular part of A
  121. *> is not referenced. If UPLO = 'L', the leading N-by-N lower
  122. *> triangular part of A contains the lower triangular part of
  123. *> the matrix A, and the strictly upper triangular part of A is
  124. *> not referenced.
  125. *> \endverbatim
  126. *>
  127. *> \param[in] LDA
  128. *> \verbatim
  129. *> LDA is INTEGER
  130. *> The leading dimension of the array A. LDA >= max(1,N).
  131. *> \endverbatim
  132. *>
  133. *> \param[in,out] AF
  134. *> \verbatim
  135. *> AF is REAL array, dimension (LDAF,N)
  136. *> If FACT = 'F', then AF is an input argument and on entry
  137. *> contains the block diagonal matrix D and the multipliers used
  138. *> to obtain the factor U or L from the factorization
  139. *> A = U*D*U**T or A = L*D*L**T as computed by SSYTRF.
  140. *>
  141. *> If FACT = 'N', then AF is an output argument and on exit
  142. *> returns the block diagonal matrix D and the multipliers used
  143. *> to obtain the factor U or L from the factorization
  144. *> A = U*D*U**T or A = L*D*L**T.
  145. *> \endverbatim
  146. *>
  147. *> \param[in] LDAF
  148. *> \verbatim
  149. *> LDAF is INTEGER
  150. *> The leading dimension of the array AF. LDAF >= max(1,N).
  151. *> \endverbatim
  152. *>
  153. *> \param[in,out] IPIV
  154. *> \verbatim
  155. *> IPIV is INTEGER array, dimension (N)
  156. *> If FACT = 'F', then IPIV is an input argument and on entry
  157. *> contains details of the interchanges and the block structure
  158. *> of D, as determined by SSYTRF.
  159. *> If IPIV(k) > 0, then rows and columns k and IPIV(k) were
  160. *> interchanged and D(k,k) is a 1-by-1 diagonal block.
  161. *> If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
  162. *> columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
  163. *> is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
  164. *> IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
  165. *> interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
  166. *>
  167. *> If FACT = 'N', then IPIV is an output argument and on exit
  168. *> contains details of the interchanges and the block structure
  169. *> of D, as determined by SSYTRF.
  170. *> \endverbatim
  171. *>
  172. *> \param[in] B
  173. *> \verbatim
  174. *> B is REAL array, dimension (LDB,NRHS)
  175. *> The N-by-NRHS right hand side matrix B.
  176. *> \endverbatim
  177. *>
  178. *> \param[in] LDB
  179. *> \verbatim
  180. *> LDB is INTEGER
  181. *> The leading dimension of the array B. LDB >= max(1,N).
  182. *> \endverbatim
  183. *>
  184. *> \param[out] X
  185. *> \verbatim
  186. *> X is REAL array, dimension (LDX,NRHS)
  187. *> If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X.
  188. *> \endverbatim
  189. *>
  190. *> \param[in] LDX
  191. *> \verbatim
  192. *> LDX is INTEGER
  193. *> The leading dimension of the array X. LDX >= max(1,N).
  194. *> \endverbatim
  195. *>
  196. *> \param[out] RCOND
  197. *> \verbatim
  198. *> RCOND is REAL
  199. *> The estimate of the reciprocal condition number of the matrix
  200. *> A. If RCOND is less than the machine precision (in
  201. *> particular, if RCOND = 0), the matrix is singular to working
  202. *> precision. This condition is indicated by a return code of
  203. *> INFO > 0.
  204. *> \endverbatim
  205. *>
  206. *> \param[out] FERR
  207. *> \verbatim
  208. *> FERR is REAL array, dimension (NRHS)
  209. *> The estimated forward error bound for each solution vector
  210. *> X(j) (the j-th column of the solution matrix X).
  211. *> If XTRUE is the true solution corresponding to X(j), FERR(j)
  212. *> is an estimated upper bound for the magnitude of the largest
  213. *> element in (X(j) - XTRUE) divided by the magnitude of the
  214. *> largest element in X(j). The estimate is as reliable as
  215. *> the estimate for RCOND, and is almost always a slight
  216. *> overestimate of the true error.
  217. *> \endverbatim
  218. *>
  219. *> \param[out] BERR
  220. *> \verbatim
  221. *> BERR is REAL array, dimension (NRHS)
  222. *> The componentwise relative backward error of each solution
  223. *> vector X(j) (i.e., the smallest relative change in
  224. *> any element of A or B that makes X(j) an exact solution).
  225. *> \endverbatim
  226. *>
  227. *> \param[out] WORK
  228. *> \verbatim
  229. *> WORK is REAL array, dimension (MAX(1,LWORK))
  230. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  231. *> \endverbatim
  232. *>
  233. *> \param[in] LWORK
  234. *> \verbatim
  235. *> LWORK is INTEGER
  236. *> The length of WORK. LWORK >= max(1,3*N), and for best
  237. *> performance, when FACT = 'N', LWORK >= max(1,3*N,N*NB), where
  238. *> NB is the optimal blocksize for SSYTRF.
  239. *>
  240. *> If LWORK = -1, then a workspace query is assumed; the routine
  241. *> only calculates the optimal size of the WORK array, returns
  242. *> this value as the first entry of the WORK array, and no error
  243. *> message related to LWORK is issued by XERBLA.
  244. *> \endverbatim
  245. *>
  246. *> \param[out] IWORK
  247. *> \verbatim
  248. *> IWORK is INTEGER array, dimension (N)
  249. *> \endverbatim
  250. *>
  251. *> \param[out] INFO
  252. *> \verbatim
  253. *> INFO is INTEGER
  254. *> = 0: successful exit
  255. *> < 0: if INFO = -i, the i-th argument had an illegal value
  256. *> > 0: if INFO = i, and i is
  257. *> <= N: D(i,i) is exactly zero. The factorization
  258. *> has been completed but the factor D is exactly
  259. *> singular, so the solution and error bounds could
  260. *> not be computed. RCOND = 0 is returned.
  261. *> = N+1: D is nonsingular, but RCOND is less than machine
  262. *> precision, meaning that the matrix is singular
  263. *> to working precision. Nevertheless, the
  264. *> solution and error bounds are computed because
  265. *> there are a number of situations where the
  266. *> computed solution can be more accurate than the
  267. *> value of RCOND would suggest.
  268. *> \endverbatim
  269. *
  270. * Authors:
  271. * ========
  272. *
  273. *> \author Univ. of Tennessee
  274. *> \author Univ. of California Berkeley
  275. *> \author Univ. of Colorado Denver
  276. *> \author NAG Ltd.
  277. *
  278. *> \date April 2012
  279. *
  280. *> \ingroup realSYsolve
  281. *
  282. * =====================================================================
  283. SUBROUTINE SSYSVX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B,
  284. $ LDB, X, LDX, RCOND, FERR, BERR, WORK, LWORK,
  285. $ IWORK, INFO )
  286. *
  287. * -- LAPACK driver routine (version 3.7.0) --
  288. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  289. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  290. * April 2012
  291. *
  292. * .. Scalar Arguments ..
  293. CHARACTER FACT, UPLO
  294. INTEGER INFO, LDA, LDAF, LDB, LDX, LWORK, N, NRHS
  295. REAL RCOND
  296. * ..
  297. * .. Array Arguments ..
  298. INTEGER IPIV( * ), IWORK( * )
  299. REAL A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
  300. $ BERR( * ), FERR( * ), WORK( * ), X( LDX, * )
  301. * ..
  302. *
  303. * =====================================================================
  304. *
  305. * .. Parameters ..
  306. REAL ZERO
  307. PARAMETER ( ZERO = 0.0E+0 )
  308. * ..
  309. * .. Local Scalars ..
  310. LOGICAL LQUERY, NOFACT
  311. INTEGER LWKOPT, NB
  312. REAL ANORM
  313. * ..
  314. * .. External Functions ..
  315. LOGICAL LSAME
  316. INTEGER ILAENV
  317. REAL SLAMCH, SLANSY
  318. EXTERNAL ILAENV, LSAME, SLAMCH, SLANSY
  319. * ..
  320. * .. External Subroutines ..
  321. EXTERNAL SLACPY, SSYCON, SSYRFS, SSYTRF, SSYTRS, XERBLA
  322. * ..
  323. * .. Intrinsic Functions ..
  324. INTRINSIC MAX
  325. * ..
  326. * .. Executable Statements ..
  327. *
  328. * Test the input parameters.
  329. *
  330. INFO = 0
  331. NOFACT = LSAME( FACT, 'N' )
  332. LQUERY = ( LWORK.EQ.-1 )
  333. IF( .NOT.NOFACT .AND. .NOT.LSAME( FACT, 'F' ) ) THEN
  334. INFO = -1
  335. ELSE IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) )
  336. $ THEN
  337. INFO = -2
  338. ELSE IF( N.LT.0 ) THEN
  339. INFO = -3
  340. ELSE IF( NRHS.LT.0 ) THEN
  341. INFO = -4
  342. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  343. INFO = -6
  344. ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
  345. INFO = -8
  346. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  347. INFO = -11
  348. ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  349. INFO = -13
  350. ELSE IF( LWORK.LT.MAX( 1, 3*N ) .AND. .NOT.LQUERY ) THEN
  351. INFO = -18
  352. END IF
  353. *
  354. IF( INFO.EQ.0 ) THEN
  355. LWKOPT = MAX( 1, 3*N )
  356. IF( NOFACT ) THEN
  357. NB = ILAENV( 1, 'SSYTRF', UPLO, N, -1, -1, -1 )
  358. LWKOPT = MAX( LWKOPT, N*NB )
  359. END IF
  360. WORK( 1 ) = LWKOPT
  361. END IF
  362. *
  363. IF( INFO.NE.0 ) THEN
  364. CALL XERBLA( 'SSYSVX', -INFO )
  365. RETURN
  366. ELSE IF( LQUERY ) THEN
  367. RETURN
  368. END IF
  369. *
  370. IF( NOFACT ) THEN
  371. *
  372. * Compute the factorization A = U*D*U**T or A = L*D*L**T.
  373. *
  374. CALL SLACPY( UPLO, N, N, A, LDA, AF, LDAF )
  375. CALL SSYTRF( UPLO, N, AF, LDAF, IPIV, WORK, LWORK, INFO )
  376. *
  377. * Return if INFO is non-zero.
  378. *
  379. IF( INFO.GT.0 )THEN
  380. RCOND = ZERO
  381. RETURN
  382. END IF
  383. END IF
  384. *
  385. * Compute the norm of the matrix A.
  386. *
  387. ANORM = SLANSY( 'I', UPLO, N, A, LDA, WORK )
  388. *
  389. * Compute the reciprocal of the condition number of A.
  390. *
  391. CALL SSYCON( UPLO, N, AF, LDAF, IPIV, ANORM, RCOND, WORK, IWORK,
  392. $ INFO )
  393. *
  394. * Compute the solution vectors X.
  395. *
  396. CALL SLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
  397. CALL SSYTRS( UPLO, N, NRHS, AF, LDAF, IPIV, X, LDX, INFO )
  398. *
  399. * Use iterative refinement to improve the computed solutions and
  400. * compute error bounds and backward error estimates for them.
  401. *
  402. CALL SSYRFS( UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB, X,
  403. $ LDX, FERR, BERR, WORK, IWORK, INFO )
  404. *
  405. * Set INFO = N+1 if the matrix is singular to working precision.
  406. *
  407. IF( RCOND.LT.SLAMCH( 'Epsilon' ) )
  408. $ INFO = N + 1
  409. *
  410. WORK( 1 ) = LWKOPT
  411. *
  412. RETURN
  413. *
  414. * End of SSYSVX
  415. *
  416. END