|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414 |
- SUBROUTINE ZGEMM3MF(TRA,TRB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
- * .. Scalar Arguments ..
- DOUBLE COMPLEX ALPHA,BETA
- INTEGER K,LDA,LDB,LDC,M,N
- CHARACTER TRA,TRB
- * ..
- * .. Array Arguments ..
- DOUBLE COMPLEX A(LDA,*),B(LDB,*),C(LDC,*)
- * ..
- *
- * Purpose
- * =======
- *
- * ZGEMM performs one of the matrix-matrix operations
- *
- * C := alpha*op( A )*op( B ) + beta*C,
- *
- * where op( X ) is one of
- *
- * op( X ) = X or op( X ) = X' or op( X ) = conjg( X' ),
- *
- * alpha and beta are scalars, and A, B and C are matrices, with op( A )
- * an m by k matrix, op( B ) a k by n matrix and C an m by n matrix.
- *
- * Arguments
- * ==========
- *
- * TRA - CHARACTER*1.
- * On entry, TRA specifies the form of op( A ) to be used in
- * the matrix multiplication as follows:
- *
- * TRA = 'N' or 'n', op( A ) = A.
- *
- * TRA = 'T' or 't', op( A ) = A'.
- *
- * TRA = 'C' or 'c', op( A ) = conjg( A' ).
- *
- * Unchanged on exit.
- *
- * TRB - CHARACTER*1.
- * On entry, TRB specifies the form of op( B ) to be used in
- * the matrix multiplication as follows:
- *
- * TRB = 'N' or 'n', op( B ) = B.
- *
- * TRB = 'T' or 't', op( B ) = B'.
- *
- * TRB = 'C' or 'c', op( B ) = conjg( B' ).
- *
- * Unchanged on exit.
- *
- * M - INTEGER.
- * On entry, M specifies the number of rows of the matrix
- * op( A ) and of the matrix C. M must be at least zero.
- * Unchanged on exit.
- *
- * N - INTEGER.
- * On entry, N specifies the number of columns of the matrix
- * op( B ) and the number of columns of the matrix C. N must be
- * at least zero.
- * Unchanged on exit.
- *
- * K - INTEGER.
- * On entry, K specifies the number of columns of the matrix
- * op( A ) and the number of rows of the matrix op( B ). K must
- * be at least zero.
- * Unchanged on exit.
- *
- * ALPHA - COMPLEX*16 .
- * On entry, ALPHA specifies the scalar alpha.
- * Unchanged on exit.
- *
- * A - COMPLEX*16 array of DIMENSION ( LDA, ka ), where ka is
- * k when TRA = 'N' or 'n', and is m otherwise.
- * Before entry with TRA = 'N' or 'n', the leading m by k
- * part of the array A must contain the matrix A, otherwise
- * the leading k by m part of the array A must contain the
- * matrix A.
- * Unchanged on exit.
- *
- * LDA - INTEGER.
- * On entry, LDA specifies the first dimension of A as declared
- * in the calling (sub) program. When TRA = 'N' or 'n' then
- * LDA must be at least max( 1, m ), otherwise LDA must be at
- * least max( 1, k ).
- * Unchanged on exit.
- *
- * B - COMPLEX*16 array of DIMENSION ( LDB, kb ), where kb is
- * n when TRB = 'N' or 'n', and is k otherwise.
- * Before entry with TRB = 'N' or 'n', the leading k by n
- * part of the array B must contain the matrix B, otherwise
- * the leading n by k part of the array B must contain the
- * matrix B.
- * Unchanged on exit.
- *
- * LDB - INTEGER.
- * On entry, LDB specifies the first dimension of B as declared
- * in the calling (sub) program. When TRB = 'N' or 'n' then
- * LDB must be at least max( 1, k ), otherwise LDB must be at
- * least max( 1, n ).
- * Unchanged on exit.
- *
- * BETA - COMPLEX*16 .
- * On entry, BETA specifies the scalar beta. When BETA is
- * supplied as zero then C need not be set on input.
- * Unchanged on exit.
- *
- * C - COMPLEX*16 array of DIMENSION ( LDC, n ).
- * Before entry, the leading m by n part of the array C must
- * contain the matrix C, except when beta is zero, in which
- * case C need not be set on entry.
- * On exit, the array C is overwritten by the m by n matrix
- * ( alpha*op( A )*op( B ) + beta*C ).
- *
- * LDC - INTEGER.
- * On entry, LDC specifies the first dimension of C as declared
- * in the calling (sub) program. LDC must be at least
- * max( 1, m ).
- * Unchanged on exit.
- *
- *
- * Level 3 Blas routine.
- *
- * -- Written on 8-February-1989.
- * Jack Dongarra, Argonne National Laboratory.
- * Iain Duff, AERE Harwell.
- * Jeremy Du Croz, Numerical Algorithms Group Ltd.
- * Sven Hammarling, Numerical Algorithms Group Ltd.
- *
- *
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * ..
- * .. External Subroutines ..
- EXTERNAL XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC DCONJG,MAX
- * ..
- * .. Local Scalars ..
- DOUBLE COMPLEX TEMP
- INTEGER I,INFO,J,L,NCOLA,NROWA,NROWB
- LOGICAL CONJA,CONJB,NOTA,NOTB
- * ..
- * .. Parameters ..
- DOUBLE COMPLEX ONE
- PARAMETER (ONE= (1.0D+0,0.0D+0))
- DOUBLE COMPLEX ZERO
- PARAMETER (ZERO= (0.0D+0,0.0D+0))
- * ..
- *
- * Set NOTA and NOTB as true if A and B respectively are not
- * conjugated or transposed, set CONJA and CONJB as true if A and
- * B respectively are to be transposed but not conjugated and set
- * NROWA, NCOLA and NROWB as the number of rows and columns of A
- * and the number of rows of B respectively.
- *
- NOTA = LSAME(TRA,'N')
- NOTB = LSAME(TRB,'N')
- CONJA = LSAME(TRA,'C')
- CONJB = LSAME(TRB,'C')
- IF (NOTA) THEN
- NROWA = M
- NCOLA = K
- ELSE
- NROWA = K
- NCOLA = M
- END IF
- IF (NOTB) THEN
- NROWB = K
- ELSE
- NROWB = N
- END IF
- *
- * Test the input parameters.
- *
- INFO = 0
- IF ((.NOT.NOTA) .AND. (.NOT.CONJA) .AND.
- + (.NOT.LSAME(TRA,'T'))) THEN
- INFO = 1
- ELSE IF ((.NOT.NOTB) .AND. (.NOT.CONJB) .AND.
- + (.NOT.LSAME(TRB,'T'))) THEN
- INFO = 2
- ELSE IF (M.LT.0) THEN
- INFO = 3
- ELSE IF (N.LT.0) THEN
- INFO = 4
- ELSE IF (K.LT.0) THEN
- INFO = 5
- ELSE IF (LDA.LT.MAX(1,NROWA)) THEN
- INFO = 8
- ELSE IF (LDB.LT.MAX(1,NROWB)) THEN
- INFO = 10
- ELSE IF (LDC.LT.MAX(1,M)) THEN
- INFO = 13
- END IF
- IF (INFO.NE.0) THEN
- CALL XERBLA('ZGEMM ',INFO)
- RETURN
- END IF
- *
- * Quick return if possible.
- *
- IF ((M.EQ.0) .OR. (N.EQ.0) .OR.
- + (((ALPHA.EQ.ZERO).OR. (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN
- *
- * And when alpha.eq.zero.
- *
- IF (ALPHA.EQ.ZERO) THEN
- IF (BETA.EQ.ZERO) THEN
- DO 20 J = 1,N
- DO 10 I = 1,M
- C(I,J) = ZERO
- 10 CONTINUE
- 20 CONTINUE
- ELSE
- DO 40 J = 1,N
- DO 30 I = 1,M
- C(I,J) = BETA*C(I,J)
- 30 CONTINUE
- 40 CONTINUE
- END IF
- RETURN
- END IF
- *
- * Start the operations.
- *
- IF (NOTB) THEN
- IF (NOTA) THEN
- *
- * Form C := alpha*A*B + beta*C.
- *
- DO 90 J = 1,N
- IF (BETA.EQ.ZERO) THEN
- DO 50 I = 1,M
- C(I,J) = ZERO
- 50 CONTINUE
- ELSE IF (BETA.NE.ONE) THEN
- DO 60 I = 1,M
- C(I,J) = BETA*C(I,J)
- 60 CONTINUE
- END IF
- DO 80 L = 1,K
- IF (B(L,J).NE.ZERO) THEN
- TEMP = ALPHA*B(L,J)
- DO 70 I = 1,M
- C(I,J) = C(I,J) + TEMP*A(I,L)
- 70 CONTINUE
- END IF
- 80 CONTINUE
- 90 CONTINUE
- ELSE IF (CONJA) THEN
- *
- * Form C := alpha*conjg( A' )*B + beta*C.
- *
- DO 120 J = 1,N
- DO 110 I = 1,M
- TEMP = ZERO
- DO 100 L = 1,K
- TEMP = TEMP + DCONJG(A(L,I))*B(L,J)
- 100 CONTINUE
- IF (BETA.EQ.ZERO) THEN
- C(I,J) = ALPHA*TEMP
- ELSE
- C(I,J) = ALPHA*TEMP + BETA*C(I,J)
- END IF
- 110 CONTINUE
- 120 CONTINUE
- ELSE
- *
- * Form C := alpha*A'*B + beta*C
- *
- DO 150 J = 1,N
- DO 140 I = 1,M
- TEMP = ZERO
- DO 130 L = 1,K
- TEMP = TEMP + A(L,I)*B(L,J)
- 130 CONTINUE
- IF (BETA.EQ.ZERO) THEN
- C(I,J) = ALPHA*TEMP
- ELSE
- C(I,J) = ALPHA*TEMP + BETA*C(I,J)
- END IF
- 140 CONTINUE
- 150 CONTINUE
- END IF
- ELSE IF (NOTA) THEN
- IF (CONJB) THEN
- *
- * Form C := alpha*A*conjg( B' ) + beta*C.
- *
- DO 200 J = 1,N
- IF (BETA.EQ.ZERO) THEN
- DO 160 I = 1,M
- C(I,J) = ZERO
- 160 CONTINUE
- ELSE IF (BETA.NE.ONE) THEN
- DO 170 I = 1,M
- C(I,J) = BETA*C(I,J)
- 170 CONTINUE
- END IF
- DO 190 L = 1,K
- IF (B(J,L).NE.ZERO) THEN
- TEMP = ALPHA*DCONJG(B(J,L))
- DO 180 I = 1,M
- C(I,J) = C(I,J) + TEMP*A(I,L)
- 180 CONTINUE
- END IF
- 190 CONTINUE
- 200 CONTINUE
- ELSE
- *
- * Form C := alpha*A*B' + beta*C
- *
- DO 250 J = 1,N
- IF (BETA.EQ.ZERO) THEN
- DO 210 I = 1,M
- C(I,J) = ZERO
- 210 CONTINUE
- ELSE IF (BETA.NE.ONE) THEN
- DO 220 I = 1,M
- C(I,J) = BETA*C(I,J)
- 220 CONTINUE
- END IF
- DO 240 L = 1,K
- IF (B(J,L).NE.ZERO) THEN
- TEMP = ALPHA*B(J,L)
- DO 230 I = 1,M
- C(I,J) = C(I,J) + TEMP*A(I,L)
- 230 CONTINUE
- END IF
- 240 CONTINUE
- 250 CONTINUE
- END IF
- ELSE IF (CONJA) THEN
- IF (CONJB) THEN
- *
- * Form C := alpha*conjg( A' )*conjg( B' ) + beta*C.
- *
- DO 280 J = 1,N
- DO 270 I = 1,M
- TEMP = ZERO
- DO 260 L = 1,K
- TEMP = TEMP + DCONJG(A(L,I))*DCONJG(B(J,L))
- 260 CONTINUE
- IF (BETA.EQ.ZERO) THEN
- C(I,J) = ALPHA*TEMP
- ELSE
- C(I,J) = ALPHA*TEMP + BETA*C(I,J)
- END IF
- 270 CONTINUE
- 280 CONTINUE
- ELSE
- *
- * Form C := alpha*conjg( A' )*B' + beta*C
- *
- DO 310 J = 1,N
- DO 300 I = 1,M
- TEMP = ZERO
- DO 290 L = 1,K
- TEMP = TEMP + DCONJG(A(L,I))*B(J,L)
- 290 CONTINUE
- IF (BETA.EQ.ZERO) THEN
- C(I,J) = ALPHA*TEMP
- ELSE
- C(I,J) = ALPHA*TEMP + BETA*C(I,J)
- END IF
- 300 CONTINUE
- 310 CONTINUE
- END IF
- ELSE
- IF (CONJB) THEN
- *
- * Form C := alpha*A'*conjg( B' ) + beta*C
- *
- DO 340 J = 1,N
- DO 330 I = 1,M
- TEMP = ZERO
- DO 320 L = 1,K
- TEMP = TEMP + A(L,I)*DCONJG(B(J,L))
- 320 CONTINUE
- IF (BETA.EQ.ZERO) THEN
- C(I,J) = ALPHA*TEMP
- ELSE
- C(I,J) = ALPHA*TEMP + BETA*C(I,J)
- END IF
- 330 CONTINUE
- 340 CONTINUE
- ELSE
- *
- * Form C := alpha*A'*B' + beta*C
- *
- DO 370 J = 1,N
- DO 360 I = 1,M
- TEMP = ZERO
- DO 350 L = 1,K
- TEMP = TEMP + A(L,I)*B(J,L)
- 350 CONTINUE
- IF (BETA.EQ.ZERO) THEN
- C(I,J) = ALPHA*TEMP
- ELSE
- C(I,J) = ALPHA*TEMP + BETA*C(I,J)
- END IF
- 360 CONTINUE
- 370 CONTINUE
- END IF
- END IF
- *
- RETURN
- *
- * End of ZGEMM .
- *
- END
|