You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

slauumf.f 4.8 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156
  1. SUBROUTINE SLAUUMF( UPLO, N, A, LDA, INFO )
  2. *
  3. * -- LAPACK auxiliary routine (version 3.0) --
  4. * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
  5. * Courant Institute, Argonne National Lab, and Rice University
  6. * February 29, 1992
  7. *
  8. * .. Scalar Arguments ..
  9. CHARACTER UPLO
  10. INTEGER INFO, LDA, N
  11. * ..
  12. * .. Array Arguments ..
  13. REAL A( LDA, * )
  14. * ..
  15. *
  16. * Purpose
  17. * =======
  18. *
  19. * SLAUUM computes the product U * U' or L' * L, where the triangular
  20. * factor U or L is stored in the upper or lower triangular part of
  21. * the array A.
  22. *
  23. * If UPLO = 'U' or 'u' then the upper triangle of the result is stored,
  24. * overwriting the factor U in A.
  25. * If UPLO = 'L' or 'l' then the lower triangle of the result is stored,
  26. * overwriting the factor L in A.
  27. *
  28. * This is the blocked form of the algorithm, calling Level 3 BLAS.
  29. *
  30. * Arguments
  31. * =========
  32. *
  33. * UPLO (input) CHARACTER*1
  34. * Specifies whether the triangular factor stored in the array A
  35. * is upper or lower triangular:
  36. * = 'U': Upper triangular
  37. * = 'L': Lower triangular
  38. *
  39. * N (input) INTEGER
  40. * The order of the triangular factor U or L. N >= 0.
  41. *
  42. * A (input/output) REAL array, dimension (LDA,N)
  43. * On entry, the triangular factor U or L.
  44. * On exit, if UPLO = 'U', the upper triangle of A is
  45. * overwritten with the upper triangle of the product U * U';
  46. * if UPLO = 'L', the lower triangle of A is overwritten with
  47. * the lower triangle of the product L' * L.
  48. *
  49. * LDA (input) INTEGER
  50. * The leading dimension of the array A. LDA >= max(1,N).
  51. *
  52. * INFO (output) INTEGER
  53. * = 0: successful exit
  54. * < 0: if INFO = -k, the k-th argument had an illegal value
  55. *
  56. * =====================================================================
  57. *
  58. * .. Parameters ..
  59. REAL ONE
  60. PARAMETER ( ONE = 1.0E+0 )
  61. * ..
  62. * .. Local Scalars ..
  63. LOGICAL UPPER
  64. INTEGER I, IB, NB
  65. * ..
  66. * .. External Functions ..
  67. LOGICAL LSAME
  68. INTEGER ILAENV
  69. EXTERNAL LSAME, ILAENV
  70. * ..
  71. * .. External Subroutines ..
  72. EXTERNAL SGEMM, SLAUU2, SSYRK, STRMM, XERBLA
  73. * ..
  74. * .. Intrinsic Functions ..
  75. INTRINSIC MAX, MIN
  76. * ..
  77. * .. Executable Statements ..
  78. *
  79. * Test the input parameters.
  80. *
  81. INFO = 0
  82. UPPER = LSAME( UPLO, 'U' )
  83. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  84. INFO = -1
  85. ELSE IF( N.LT.0 ) THEN
  86. INFO = -2
  87. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  88. INFO = -4
  89. END IF
  90. IF( INFO.NE.0 ) THEN
  91. CALL XERBLA( 'SLAUUM', -INFO )
  92. RETURN
  93. END IF
  94. *
  95. * Quick return if possible
  96. *
  97. IF( N.EQ.0 )
  98. $ RETURN
  99. *
  100. * Determine the block size for this environment.
  101. *
  102. NB = 128
  103. *
  104. IF( NB.LE.1 .OR. NB.GE.N ) THEN
  105. *
  106. * Use unblocked code
  107. *
  108. CALL SLAUU2( UPLO, N, A, LDA, INFO )
  109. ELSE
  110. *
  111. * Use blocked code
  112. *
  113. IF( UPPER ) THEN
  114. *
  115. * Compute the product U * U'.
  116. *
  117. DO 10 I = 1, N, NB
  118. IB = MIN( NB, N-I+1 )
  119. CALL STRMM( 'Right', 'Upper', 'Transpose', 'Non-unit',
  120. $ I-1, IB, ONE, A( I, I ), LDA, A( 1, I ),
  121. $ LDA )
  122. CALL SLAUU2( 'Upper', IB, A( I, I ), LDA, INFO )
  123. IF( I+IB.LE.N ) THEN
  124. CALL SGEMM( 'No transpose', 'Transpose', I-1, IB,
  125. $ N-I-IB+1, ONE, A( 1, I+IB ), LDA,
  126. $ A( I, I+IB ), LDA, ONE, A( 1, I ), LDA )
  127. CALL SSYRK( 'Upper', 'No transpose', IB, N-I-IB+1,
  128. $ ONE, A( I, I+IB ), LDA, ONE, A( I, I ),
  129. $ LDA )
  130. END IF
  131. 10 CONTINUE
  132. ELSE
  133. *
  134. * Compute the product L' * L.
  135. *
  136. DO 20 I = 1, N, NB
  137. IB = MIN( NB, N-I+1 )
  138. CALL STRMM( 'Left', 'Lower', 'Transpose', 'Non-unit', IB,
  139. $ I-1, ONE, A( I, I ), LDA, A( I, 1 ), LDA )
  140. CALL SLAUU2( 'Lower', IB, A( I, I ), LDA, INFO )
  141. IF( I+IB.LE.N ) THEN
  142. CALL SGEMM( 'Transpose', 'No transpose', IB, I-1,
  143. $ N-I-IB+1, ONE, A( I+IB, I ), LDA,
  144. $ A( I+IB, 1 ), LDA, ONE, A( I, 1 ), LDA )
  145. CALL SSYRK( 'Lower', 'Transpose', IB, N-I-IB+1, ONE,
  146. $ A( I+IB, I ), LDA, ONE, A( I, I ), LDA )
  147. END IF
  148. 20 CONTINUE
  149. END IF
  150. END IF
  151. *
  152. RETURN
  153. *
  154. * End of SLAUUM
  155. *
  156. END