You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zlanhp.f 8.3 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269
  1. *> \brief \b ZLANHP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian matrix supplied in packed form.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZLANHP + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlanhp.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlanhp.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlanhp.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * DOUBLE PRECISION FUNCTION ZLANHP( NORM, UPLO, N, AP, WORK )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER NORM, UPLO
  25. * INTEGER N
  26. * ..
  27. * .. Array Arguments ..
  28. * DOUBLE PRECISION WORK( * )
  29. * COMPLEX*16 AP( * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> ZLANHP returns the value of the one norm, or the Frobenius norm, or
  39. *> the infinity norm, or the element of largest absolute value of a
  40. *> complex hermitian matrix A, supplied in packed form.
  41. *> \endverbatim
  42. *>
  43. *> \return ZLANHP
  44. *> \verbatim
  45. *>
  46. *> ZLANHP = ( max(abs(A(i,j))), NORM = 'M' or 'm'
  47. *> (
  48. *> ( norm1(A), NORM = '1', 'O' or 'o'
  49. *> (
  50. *> ( normI(A), NORM = 'I' or 'i'
  51. *> (
  52. *> ( normF(A), NORM = 'F', 'f', 'E' or 'e'
  53. *>
  54. *> where norm1 denotes the one norm of a matrix (maximum column sum),
  55. *> normI denotes the infinity norm of a matrix (maximum row sum) and
  56. *> normF denotes the Frobenius norm of a matrix (square root of sum of
  57. *> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
  58. *> \endverbatim
  59. *
  60. * Arguments:
  61. * ==========
  62. *
  63. *> \param[in] NORM
  64. *> \verbatim
  65. *> NORM is CHARACTER*1
  66. *> Specifies the value to be returned in ZLANHP as described
  67. *> above.
  68. *> \endverbatim
  69. *>
  70. *> \param[in] UPLO
  71. *> \verbatim
  72. *> UPLO is CHARACTER*1
  73. *> Specifies whether the upper or lower triangular part of the
  74. *> hermitian matrix A is supplied.
  75. *> = 'U': Upper triangular part of A is supplied
  76. *> = 'L': Lower triangular part of A is supplied
  77. *> \endverbatim
  78. *>
  79. *> \param[in] N
  80. *> \verbatim
  81. *> N is INTEGER
  82. *> The order of the matrix A. N >= 0. When N = 0, ZLANHP is
  83. *> set to zero.
  84. *> \endverbatim
  85. *>
  86. *> \param[in] AP
  87. *> \verbatim
  88. *> AP is COMPLEX*16 array, dimension (N*(N+1)/2)
  89. *> The upper or lower triangle of the hermitian matrix A, packed
  90. *> columnwise in a linear array. The j-th column of A is stored
  91. *> in the array AP as follows:
  92. *> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
  93. *> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
  94. *> Note that the imaginary parts of the diagonal elements need
  95. *> not be set and are assumed to be zero.
  96. *> \endverbatim
  97. *>
  98. *> \param[out] WORK
  99. *> \verbatim
  100. *> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
  101. *> where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
  102. *> WORK is not referenced.
  103. *> \endverbatim
  104. *
  105. * Authors:
  106. * ========
  107. *
  108. *> \author Univ. of Tennessee
  109. *> \author Univ. of California Berkeley
  110. *> \author Univ. of Colorado Denver
  111. *> \author NAG Ltd.
  112. *
  113. *> \date December 2016
  114. *
  115. *> \ingroup complex16OTHERauxiliary
  116. *
  117. * =====================================================================
  118. DOUBLE PRECISION FUNCTION ZLANHP( NORM, UPLO, N, AP, WORK )
  119. *
  120. * -- LAPACK auxiliary routine (version 3.7.0) --
  121. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  122. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  123. * December 2016
  124. *
  125. * .. Scalar Arguments ..
  126. CHARACTER NORM, UPLO
  127. INTEGER N
  128. * ..
  129. * .. Array Arguments ..
  130. DOUBLE PRECISION WORK( * )
  131. COMPLEX*16 AP( * )
  132. * ..
  133. *
  134. * =====================================================================
  135. *
  136. * .. Parameters ..
  137. DOUBLE PRECISION ONE, ZERO
  138. PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  139. * ..
  140. * .. Local Scalars ..
  141. INTEGER I, J, K
  142. DOUBLE PRECISION ABSA, SCALE, SUM, VALUE
  143. * ..
  144. * .. External Functions ..
  145. LOGICAL LSAME, DISNAN
  146. EXTERNAL LSAME, DISNAN
  147. * ..
  148. * .. External Subroutines ..
  149. EXTERNAL ZLASSQ
  150. * ..
  151. * .. Intrinsic Functions ..
  152. INTRINSIC ABS, DBLE, SQRT
  153. * ..
  154. * .. Executable Statements ..
  155. *
  156. IF( N.EQ.0 ) THEN
  157. VALUE = ZERO
  158. ELSE IF( LSAME( NORM, 'M' ) ) THEN
  159. *
  160. * Find max(abs(A(i,j))).
  161. *
  162. VALUE = ZERO
  163. IF( LSAME( UPLO, 'U' ) ) THEN
  164. K = 0
  165. DO 20 J = 1, N
  166. DO 10 I = K + 1, K + J - 1
  167. SUM = ABS( AP( I ) )
  168. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  169. 10 CONTINUE
  170. K = K + J
  171. SUM = ABS( DBLE( AP( K ) ) )
  172. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  173. 20 CONTINUE
  174. ELSE
  175. K = 1
  176. DO 40 J = 1, N
  177. SUM = ABS( DBLE( AP( K ) ) )
  178. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  179. DO 30 I = K + 1, K + N - J
  180. SUM = ABS( AP( I ) )
  181. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  182. 30 CONTINUE
  183. K = K + N - J + 1
  184. 40 CONTINUE
  185. END IF
  186. ELSE IF( ( LSAME( NORM, 'I' ) ) .OR. ( LSAME( NORM, 'O' ) ) .OR.
  187. $ ( NORM.EQ.'1' ) ) THEN
  188. *
  189. * Find normI(A) ( = norm1(A), since A is hermitian).
  190. *
  191. VALUE = ZERO
  192. K = 1
  193. IF( LSAME( UPLO, 'U' ) ) THEN
  194. DO 60 J = 1, N
  195. SUM = ZERO
  196. DO 50 I = 1, J - 1
  197. ABSA = ABS( AP( K ) )
  198. SUM = SUM + ABSA
  199. WORK( I ) = WORK( I ) + ABSA
  200. K = K + 1
  201. 50 CONTINUE
  202. WORK( J ) = SUM + ABS( DBLE( AP( K ) ) )
  203. K = K + 1
  204. 60 CONTINUE
  205. DO 70 I = 1, N
  206. SUM = WORK( I )
  207. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  208. 70 CONTINUE
  209. ELSE
  210. DO 80 I = 1, N
  211. WORK( I ) = ZERO
  212. 80 CONTINUE
  213. DO 100 J = 1, N
  214. SUM = WORK( J ) + ABS( DBLE( AP( K ) ) )
  215. K = K + 1
  216. DO 90 I = J + 1, N
  217. ABSA = ABS( AP( K ) )
  218. SUM = SUM + ABSA
  219. WORK( I ) = WORK( I ) + ABSA
  220. K = K + 1
  221. 90 CONTINUE
  222. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  223. 100 CONTINUE
  224. END IF
  225. ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
  226. *
  227. * Find normF(A).
  228. *
  229. SCALE = ZERO
  230. SUM = ONE
  231. K = 2
  232. IF( LSAME( UPLO, 'U' ) ) THEN
  233. DO 110 J = 2, N
  234. CALL ZLASSQ( J-1, AP( K ), 1, SCALE, SUM )
  235. K = K + J
  236. 110 CONTINUE
  237. ELSE
  238. DO 120 J = 1, N - 1
  239. CALL ZLASSQ( N-J, AP( K ), 1, SCALE, SUM )
  240. K = K + N - J + 1
  241. 120 CONTINUE
  242. END IF
  243. SUM = 2*SUM
  244. K = 1
  245. DO 130 I = 1, N
  246. IF( DBLE( AP( K ) ).NE.ZERO ) THEN
  247. ABSA = ABS( DBLE( AP( K ) ) )
  248. IF( SCALE.LT.ABSA ) THEN
  249. SUM = ONE + SUM*( SCALE / ABSA )**2
  250. SCALE = ABSA
  251. ELSE
  252. SUM = SUM + ( ABSA / SCALE )**2
  253. END IF
  254. END IF
  255. IF( LSAME( UPLO, 'U' ) ) THEN
  256. K = K + I + 1
  257. ELSE
  258. K = K + N - I + 1
  259. END IF
  260. 130 CONTINUE
  261. VALUE = SCALE*SQRT( SUM )
  262. END IF
  263. *
  264. ZLANHP = VALUE
  265. RETURN
  266. *
  267. * End of ZLANHP
  268. *
  269. END