You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

csyr2kf.f 11 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324
  1. SUBROUTINE CSYR2KF( UPLO, TRANS, N, K, ALPHA, A, LDA, B, LDB,
  2. $ BETA, C, LDC )
  3. * .. Scalar Arguments ..
  4. CHARACTER*1 UPLO, TRANS
  5. INTEGER N, K, LDA, LDB, LDC
  6. COMPLEX ALPHA, BETA
  7. * .. Array Arguments ..
  8. COMPLEX A( LDA, * ), B( LDB, * ), C( LDC, * )
  9. * ..
  10. *
  11. * Purpose
  12. * =======
  13. *
  14. * CSYR2K performs one of the symmetric rank 2k operations
  15. *
  16. * C := alpha*A*B' + alpha*B*A' + beta*C,
  17. *
  18. * or
  19. *
  20. * C := alpha*A'*B + alpha*B'*A + beta*C,
  21. *
  22. * where alpha and beta are scalars, C is an n by n symmetric matrix
  23. * and A and B are n by k matrices in the first case and k by n
  24. * matrices in the second case.
  25. *
  26. * Parameters
  27. * ==========
  28. *
  29. * UPLO - CHARACTER*1.
  30. * On entry, UPLO specifies whether the upper or lower
  31. * triangular part of the array C is to be referenced as
  32. * follows:
  33. *
  34. * UPLO = 'U' or 'u' Only the upper triangular part of C
  35. * is to be referenced.
  36. *
  37. * UPLO = 'L' or 'l' Only the lower triangular part of C
  38. * is to be referenced.
  39. *
  40. * Unchanged on exit.
  41. *
  42. * TRANS - CHARACTER*1.
  43. * On entry, TRANS specifies the operation to be performed as
  44. * follows:
  45. *
  46. * TRANS = 'N' or 'n' C := alpha*A*B' + alpha*B*A' +
  47. * beta*C.
  48. *
  49. * TRANS = 'T' or 't' C := alpha*A'*B + alpha*B'*A +
  50. * beta*C.
  51. *
  52. * Unchanged on exit.
  53. *
  54. * N - INTEGER.
  55. * On entry, N specifies the order of the matrix C. N must be
  56. * at least zero.
  57. * Unchanged on exit.
  58. *
  59. * K - INTEGER.
  60. * On entry with TRANS = 'N' or 'n', K specifies the number
  61. * of columns of the matrices A and B, and on entry with
  62. * TRANS = 'T' or 't', K specifies the number of rows of the
  63. * matrices A and B. K must be at least zero.
  64. * Unchanged on exit.
  65. *
  66. * ALPHA - COMPLEX .
  67. * On entry, ALPHA specifies the scalar alpha.
  68. * Unchanged on exit.
  69. *
  70. * A - COMPLEX array of DIMENSION ( LDA, ka ), where ka is
  71. * k when TRANS = 'N' or 'n', and is n otherwise.
  72. * Before entry with TRANS = 'N' or 'n', the leading n by k
  73. * part of the array A must contain the matrix A, otherwise
  74. * the leading k by n part of the array A must contain the
  75. * matrix A.
  76. * Unchanged on exit.
  77. *
  78. * LDA - INTEGER.
  79. * On entry, LDA specifies the first dimension of A as declared
  80. * in the calling (sub) program. When TRANS = 'N' or 'n'
  81. * then LDA must be at least max( 1, n ), otherwise LDA must
  82. * be at least max( 1, k ).
  83. * Unchanged on exit.
  84. *
  85. * B - COMPLEX array of DIMENSION ( LDB, kb ), where kb is
  86. * k when TRANS = 'N' or 'n', and is n otherwise.
  87. * Before entry with TRANS = 'N' or 'n', the leading n by k
  88. * part of the array B must contain the matrix B, otherwise
  89. * the leading k by n part of the array B must contain the
  90. * matrix B.
  91. * Unchanged on exit.
  92. *
  93. * LDB - INTEGER.
  94. * On entry, LDB specifies the first dimension of B as declared
  95. * in the calling (sub) program. When TRANS = 'N' or 'n'
  96. * then LDB must be at least max( 1, n ), otherwise LDB must
  97. * be at least max( 1, k ).
  98. * Unchanged on exit.
  99. *
  100. * BETA - COMPLEX .
  101. * On entry, BETA specifies the scalar beta.
  102. * Unchanged on exit.
  103. *
  104. * C - COMPLEX array of DIMENSION ( LDC, n ).
  105. * Before entry with UPLO = 'U' or 'u', the leading n by n
  106. * upper triangular part of the array C must contain the upper
  107. * triangular part of the symmetric matrix and the strictly
  108. * lower triangular part of C is not referenced. On exit, the
  109. * upper triangular part of the array C is overwritten by the
  110. * upper triangular part of the updated matrix.
  111. * Before entry with UPLO = 'L' or 'l', the leading n by n
  112. * lower triangular part of the array C must contain the lower
  113. * triangular part of the symmetric matrix and the strictly
  114. * upper triangular part of C is not referenced. On exit, the
  115. * lower triangular part of the array C is overwritten by the
  116. * lower triangular part of the updated matrix.
  117. *
  118. * LDC - INTEGER.
  119. * On entry, LDC specifies the first dimension of C as declared
  120. * in the calling (sub) program. LDC must be at least
  121. * max( 1, n ).
  122. * Unchanged on exit.
  123. *
  124. *
  125. * Level 3 Blas routine.
  126. *
  127. * -- Written on 8-February-1989.
  128. * Jack Dongarra, Argonne National Laboratory.
  129. * Iain Duff, AERE Harwell.
  130. * Jeremy Du Croz, Numerical Algorithms Group Ltd.
  131. * Sven Hammarling, Numerical Algorithms Group Ltd.
  132. *
  133. *
  134. * .. External Functions ..
  135. LOGICAL LSAME
  136. EXTERNAL LSAME
  137. * .. External Subroutines ..
  138. EXTERNAL XERBLA
  139. * .. Intrinsic Functions ..
  140. INTRINSIC MAX
  141. * .. Local Scalars ..
  142. LOGICAL UPPER
  143. INTEGER I, INFO, J, L, NROWA
  144. COMPLEX TEMP1, TEMP2
  145. * .. Parameters ..
  146. COMPLEX ONE
  147. PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ) )
  148. COMPLEX ZERO
  149. PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ) )
  150. * ..
  151. * .. Executable Statements ..
  152. *
  153. * Test the input parameters.
  154. *
  155. IF( LSAME( TRANS, 'N' ) )THEN
  156. NROWA = N
  157. ELSE
  158. NROWA = K
  159. END IF
  160. UPPER = LSAME( UPLO, 'U' )
  161. *
  162. INFO = 0
  163. IF( ( .NOT.UPPER ).AND.
  164. $ ( .NOT.LSAME( UPLO , 'L' ) ) )THEN
  165. INFO = 1
  166. ELSE IF( ( .NOT.LSAME( TRANS, 'N' ) ).AND.
  167. $ ( .NOT.LSAME( TRANS, 'T' ) ) )THEN
  168. INFO = 2
  169. ELSE IF( N .LT.0 )THEN
  170. INFO = 3
  171. ELSE IF( K .LT.0 )THEN
  172. INFO = 4
  173. ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN
  174. INFO = 7
  175. ELSE IF( LDB.LT.MAX( 1, NROWA ) )THEN
  176. INFO = 9
  177. ELSE IF( LDC.LT.MAX( 1, N ) )THEN
  178. INFO = 12
  179. END IF
  180. IF( INFO.NE.0 )THEN
  181. CALL XERBLA( 'CSYR2K', INFO )
  182. RETURN
  183. END IF
  184. *
  185. * Quick return if possible.
  186. *
  187. IF( ( N.EQ.0 ).OR.
  188. $ ( ( ( ALPHA.EQ.ZERO ).OR.( K.EQ.0 ) ).AND.( BETA.EQ.ONE ) ) )
  189. $ RETURN
  190. *
  191. * And when alpha.eq.zero.
  192. *
  193. IF( ALPHA.EQ.ZERO )THEN
  194. IF( UPPER )THEN
  195. IF( BETA.EQ.ZERO )THEN
  196. DO 20, J = 1, N
  197. DO 10, I = 1, J
  198. C( I, J ) = ZERO
  199. 10 CONTINUE
  200. 20 CONTINUE
  201. ELSE
  202. DO 40, J = 1, N
  203. DO 30, I = 1, J
  204. C( I, J ) = BETA*C( I, J )
  205. 30 CONTINUE
  206. 40 CONTINUE
  207. END IF
  208. ELSE
  209. IF( BETA.EQ.ZERO )THEN
  210. DO 60, J = 1, N
  211. DO 50, I = J, N
  212. C( I, J ) = ZERO
  213. 50 CONTINUE
  214. 60 CONTINUE
  215. ELSE
  216. DO 80, J = 1, N
  217. DO 70, I = J, N
  218. C( I, J ) = BETA*C( I, J )
  219. 70 CONTINUE
  220. 80 CONTINUE
  221. END IF
  222. END IF
  223. RETURN
  224. END IF
  225. *
  226. * Start the operations.
  227. *
  228. IF( LSAME( TRANS, 'N' ) )THEN
  229. *
  230. * Form C := alpha*A*B' + alpha*B*A' + C.
  231. *
  232. IF( UPPER )THEN
  233. DO 130, J = 1, N
  234. IF( BETA.EQ.ZERO )THEN
  235. DO 90, I = 1, J
  236. C( I, J ) = ZERO
  237. 90 CONTINUE
  238. ELSE IF( BETA.NE.ONE )THEN
  239. DO 100, I = 1, J
  240. C( I, J ) = BETA*C( I, J )
  241. 100 CONTINUE
  242. END IF
  243. DO 120, L = 1, K
  244. IF( ( A( J, L ).NE.ZERO ).OR.
  245. $ ( B( J, L ).NE.ZERO ) )THEN
  246. TEMP1 = ALPHA*B( J, L )
  247. TEMP2 = ALPHA*A( J, L )
  248. DO 110, I = 1, J
  249. C( I, J ) = C( I, J ) + A( I, L )*TEMP1 +
  250. $ B( I, L )*TEMP2
  251. 110 CONTINUE
  252. END IF
  253. 120 CONTINUE
  254. 130 CONTINUE
  255. ELSE
  256. DO 180, J = 1, N
  257. IF( BETA.EQ.ZERO )THEN
  258. DO 140, I = J, N
  259. C( I, J ) = ZERO
  260. 140 CONTINUE
  261. ELSE IF( BETA.NE.ONE )THEN
  262. DO 150, I = J, N
  263. C( I, J ) = BETA*C( I, J )
  264. 150 CONTINUE
  265. END IF
  266. DO 170, L = 1, K
  267. IF( ( A( J, L ).NE.ZERO ).OR.
  268. $ ( B( J, L ).NE.ZERO ) )THEN
  269. TEMP1 = ALPHA*B( J, L )
  270. TEMP2 = ALPHA*A( J, L )
  271. DO 160, I = J, N
  272. C( I, J ) = C( I, J ) + A( I, L )*TEMP1 +
  273. $ B( I, L )*TEMP2
  274. 160 CONTINUE
  275. END IF
  276. 170 CONTINUE
  277. 180 CONTINUE
  278. END IF
  279. ELSE
  280. *
  281. * Form C := alpha*A'*B + alpha*B'*A + C.
  282. *
  283. IF( UPPER )THEN
  284. DO 210, J = 1, N
  285. DO 200, I = 1, J
  286. TEMP1 = ZERO
  287. TEMP2 = ZERO
  288. DO 190, L = 1, K
  289. TEMP1 = TEMP1 + A( L, I )*B( L, J )
  290. TEMP2 = TEMP2 + B( L, I )*A( L, J )
  291. 190 CONTINUE
  292. IF( BETA.EQ.ZERO )THEN
  293. C( I, J ) = ALPHA*TEMP1 + ALPHA*TEMP2
  294. ELSE
  295. C( I, J ) = BETA *C( I, J ) +
  296. $ ALPHA*TEMP1 + ALPHA*TEMP2
  297. END IF
  298. 200 CONTINUE
  299. 210 CONTINUE
  300. ELSE
  301. DO 240, J = 1, N
  302. DO 230, I = J, N
  303. TEMP1 = ZERO
  304. TEMP2 = ZERO
  305. DO 220, L = 1, K
  306. TEMP1 = TEMP1 + A( L, I )*B( L, J )
  307. TEMP2 = TEMP2 + B( L, I )*A( L, J )
  308. 220 CONTINUE
  309. IF( BETA.EQ.ZERO )THEN
  310. C( I, J ) = ALPHA*TEMP1 + ALPHA*TEMP2
  311. ELSE
  312. C( I, J ) = BETA *C( I, J ) +
  313. $ ALPHA*TEMP1 + ALPHA*TEMP2
  314. END IF
  315. 230 CONTINUE
  316. 240 CONTINUE
  317. END IF
  318. END IF
  319. *
  320. RETURN
  321. *
  322. * End of CSYR2K.
  323. *
  324. END