You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ctpsv.f 12 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390
  1. *> \brief \b CTPSV
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE CTPSV(UPLO,TRANS,DIAG,N,AP,X,INCX)
  12. *
  13. * .. Scalar Arguments ..
  14. * INTEGER INCX,N
  15. * CHARACTER DIAG,TRANS,UPLO
  16. * ..
  17. * .. Array Arguments ..
  18. * COMPLEX AP(*),X(*)
  19. * ..
  20. *
  21. *
  22. *> \par Purpose:
  23. * =============
  24. *>
  25. *> \verbatim
  26. *>
  27. *> CTPSV solves one of the systems of equations
  28. *>
  29. *> A*x = b, or A**T*x = b, or A**H*x = b,
  30. *>
  31. *> where b and x are n element vectors and A is an n by n unit, or
  32. *> non-unit, upper or lower triangular matrix, supplied in packed form.
  33. *>
  34. *> No test for singularity or near-singularity is included in this
  35. *> routine. Such tests must be performed before calling this routine.
  36. *> \endverbatim
  37. *
  38. * Arguments:
  39. * ==========
  40. *
  41. *> \param[in] UPLO
  42. *> \verbatim
  43. *> UPLO is CHARACTER*1
  44. *> On entry, UPLO specifies whether the matrix is an upper or
  45. *> lower triangular matrix as follows:
  46. *>
  47. *> UPLO = 'U' or 'u' A is an upper triangular matrix.
  48. *>
  49. *> UPLO = 'L' or 'l' A is a lower triangular matrix.
  50. *> \endverbatim
  51. *>
  52. *> \param[in] TRANS
  53. *> \verbatim
  54. *> TRANS is CHARACTER*1
  55. *> On entry, TRANS specifies the equations to be solved as
  56. *> follows:
  57. *>
  58. *> TRANS = 'N' or 'n' A*x = b.
  59. *>
  60. *> TRANS = 'T' or 't' A**T*x = b.
  61. *>
  62. *> TRANS = 'C' or 'c' A**H*x = b.
  63. *> \endverbatim
  64. *>
  65. *> \param[in] DIAG
  66. *> \verbatim
  67. *> DIAG is CHARACTER*1
  68. *> On entry, DIAG specifies whether or not A is unit
  69. *> triangular as follows:
  70. *>
  71. *> DIAG = 'U' or 'u' A is assumed to be unit triangular.
  72. *>
  73. *> DIAG = 'N' or 'n' A is not assumed to be unit
  74. *> triangular.
  75. *> \endverbatim
  76. *>
  77. *> \param[in] N
  78. *> \verbatim
  79. *> N is INTEGER
  80. *> On entry, N specifies the order of the matrix A.
  81. *> N must be at least zero.
  82. *> \endverbatim
  83. *>
  84. *> \param[in] AP
  85. *> \verbatim
  86. *> AP is COMPLEX array of DIMENSION at least
  87. *> ( ( n*( n + 1 ) )/2 ).
  88. *> Before entry with UPLO = 'U' or 'u', the array AP must
  89. *> contain the upper triangular matrix packed sequentially,
  90. *> column by column, so that AP( 1 ) contains a( 1, 1 ),
  91. *> AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 )
  92. *> respectively, and so on.
  93. *> Before entry with UPLO = 'L' or 'l', the array AP must
  94. *> contain the lower triangular matrix packed sequentially,
  95. *> column by column, so that AP( 1 ) contains a( 1, 1 ),
  96. *> AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 )
  97. *> respectively, and so on.
  98. *> Note that when DIAG = 'U' or 'u', the diagonal elements of
  99. *> A are not referenced, but are assumed to be unity.
  100. *> \endverbatim
  101. *>
  102. *> \param[in,out] X
  103. *> \verbatim
  104. *> X is COMPLEX array of dimension at least
  105. *> ( 1 + ( n - 1 )*abs( INCX ) ).
  106. *> Before entry, the incremented array X must contain the n
  107. *> element right-hand side vector b. On exit, X is overwritten
  108. *> with the solution vector x.
  109. *> \endverbatim
  110. *>
  111. *> \param[in] INCX
  112. *> \verbatim
  113. *> INCX is INTEGER
  114. *> On entry, INCX specifies the increment for the elements of
  115. *> X. INCX must not be zero.
  116. *> \endverbatim
  117. *
  118. * Authors:
  119. * ========
  120. *
  121. *> \author Univ. of Tennessee
  122. *> \author Univ. of California Berkeley
  123. *> \author Univ. of Colorado Denver
  124. *> \author NAG Ltd.
  125. *
  126. *> \date November 2011
  127. *
  128. *> \ingroup complex_blas_level2
  129. *
  130. *> \par Further Details:
  131. * =====================
  132. *>
  133. *> \verbatim
  134. *>
  135. *> Level 2 Blas routine.
  136. *>
  137. *> -- Written on 22-October-1986.
  138. *> Jack Dongarra, Argonne National Lab.
  139. *> Jeremy Du Croz, Nag Central Office.
  140. *> Sven Hammarling, Nag Central Office.
  141. *> Richard Hanson, Sandia National Labs.
  142. *> \endverbatim
  143. *>
  144. * =====================================================================
  145. SUBROUTINE CTPSV(UPLO,TRANS,DIAG,N,AP,X,INCX)
  146. *
  147. * -- Reference BLAS level2 routine (version 3.4.0) --
  148. * -- Reference BLAS is a software package provided by Univ. of Tennessee, --
  149. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  150. * November 2011
  151. *
  152. * .. Scalar Arguments ..
  153. INTEGER INCX,N
  154. CHARACTER DIAG,TRANS,UPLO
  155. * ..
  156. * .. Array Arguments ..
  157. COMPLEX AP(*),X(*)
  158. * ..
  159. *
  160. * =====================================================================
  161. *
  162. * .. Parameters ..
  163. COMPLEX ZERO
  164. PARAMETER (ZERO= (0.0E+0,0.0E+0))
  165. * ..
  166. * .. Local Scalars ..
  167. COMPLEX TEMP
  168. INTEGER I,INFO,IX,J,JX,K,KK,KX
  169. LOGICAL NOCONJ,NOUNIT
  170. * ..
  171. * .. External Functions ..
  172. LOGICAL LSAME
  173. EXTERNAL LSAME
  174. * ..
  175. * .. External Subroutines ..
  176. EXTERNAL XERBLA
  177. * ..
  178. * .. Intrinsic Functions ..
  179. INTRINSIC CONJG
  180. * ..
  181. *
  182. * Test the input parameters.
  183. *
  184. INFO = 0
  185. IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
  186. INFO = 1
  187. ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
  188. + .NOT.LSAME(TRANS,'C')) THEN
  189. INFO = 2
  190. ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
  191. INFO = 3
  192. ELSE IF (N.LT.0) THEN
  193. INFO = 4
  194. ELSE IF (INCX.EQ.0) THEN
  195. INFO = 7
  196. END IF
  197. IF (INFO.NE.0) THEN
  198. CALL XERBLA('CTPSV ',INFO)
  199. RETURN
  200. END IF
  201. *
  202. * Quick return if possible.
  203. *
  204. IF (N.EQ.0) RETURN
  205. *
  206. NOCONJ = LSAME(TRANS,'T')
  207. NOUNIT = LSAME(DIAG,'N')
  208. *
  209. * Set up the start point in X if the increment is not unity. This
  210. * will be ( N - 1 )*INCX too small for descending loops.
  211. *
  212. IF (INCX.LE.0) THEN
  213. KX = 1 - (N-1)*INCX
  214. ELSE IF (INCX.NE.1) THEN
  215. KX = 1
  216. END IF
  217. *
  218. * Start the operations. In this version the elements of AP are
  219. * accessed sequentially with one pass through AP.
  220. *
  221. IF (LSAME(TRANS,'N')) THEN
  222. *
  223. * Form x := inv( A )*x.
  224. *
  225. IF (LSAME(UPLO,'U')) THEN
  226. KK = (N* (N+1))/2
  227. IF (INCX.EQ.1) THEN
  228. DO 20 J = N,1,-1
  229. IF (X(J).NE.ZERO) THEN
  230. IF (NOUNIT) X(J) = X(J)/AP(KK)
  231. TEMP = X(J)
  232. K = KK - 1
  233. DO 10 I = J - 1,1,-1
  234. X(I) = X(I) - TEMP*AP(K)
  235. K = K - 1
  236. 10 CONTINUE
  237. END IF
  238. KK = KK - J
  239. 20 CONTINUE
  240. ELSE
  241. JX = KX + (N-1)*INCX
  242. DO 40 J = N,1,-1
  243. IF (X(JX).NE.ZERO) THEN
  244. IF (NOUNIT) X(JX) = X(JX)/AP(KK)
  245. TEMP = X(JX)
  246. IX = JX
  247. DO 30 K = KK - 1,KK - J + 1,-1
  248. IX = IX - INCX
  249. X(IX) = X(IX) - TEMP*AP(K)
  250. 30 CONTINUE
  251. END IF
  252. JX = JX - INCX
  253. KK = KK - J
  254. 40 CONTINUE
  255. END IF
  256. ELSE
  257. KK = 1
  258. IF (INCX.EQ.1) THEN
  259. DO 60 J = 1,N
  260. IF (X(J).NE.ZERO) THEN
  261. IF (NOUNIT) X(J) = X(J)/AP(KK)
  262. TEMP = X(J)
  263. K = KK + 1
  264. DO 50 I = J + 1,N
  265. X(I) = X(I) - TEMP*AP(K)
  266. K = K + 1
  267. 50 CONTINUE
  268. END IF
  269. KK = KK + (N-J+1)
  270. 60 CONTINUE
  271. ELSE
  272. JX = KX
  273. DO 80 J = 1,N
  274. IF (X(JX).NE.ZERO) THEN
  275. IF (NOUNIT) X(JX) = X(JX)/AP(KK)
  276. TEMP = X(JX)
  277. IX = JX
  278. DO 70 K = KK + 1,KK + N - J
  279. IX = IX + INCX
  280. X(IX) = X(IX) - TEMP*AP(K)
  281. 70 CONTINUE
  282. END IF
  283. JX = JX + INCX
  284. KK = KK + (N-J+1)
  285. 80 CONTINUE
  286. END IF
  287. END IF
  288. ELSE
  289. *
  290. * Form x := inv( A**T )*x or x := inv( A**H )*x.
  291. *
  292. IF (LSAME(UPLO,'U')) THEN
  293. KK = 1
  294. IF (INCX.EQ.1) THEN
  295. DO 110 J = 1,N
  296. TEMP = X(J)
  297. K = KK
  298. IF (NOCONJ) THEN
  299. DO 90 I = 1,J - 1
  300. TEMP = TEMP - AP(K)*X(I)
  301. K = K + 1
  302. 90 CONTINUE
  303. IF (NOUNIT) TEMP = TEMP/AP(KK+J-1)
  304. ELSE
  305. DO 100 I = 1,J - 1
  306. TEMP = TEMP - CONJG(AP(K))*X(I)
  307. K = K + 1
  308. 100 CONTINUE
  309. IF (NOUNIT) TEMP = TEMP/CONJG(AP(KK+J-1))
  310. END IF
  311. X(J) = TEMP
  312. KK = KK + J
  313. 110 CONTINUE
  314. ELSE
  315. JX = KX
  316. DO 140 J = 1,N
  317. TEMP = X(JX)
  318. IX = KX
  319. IF (NOCONJ) THEN
  320. DO 120 K = KK,KK + J - 2
  321. TEMP = TEMP - AP(K)*X(IX)
  322. IX = IX + INCX
  323. 120 CONTINUE
  324. IF (NOUNIT) TEMP = TEMP/AP(KK+J-1)
  325. ELSE
  326. DO 130 K = KK,KK + J - 2
  327. TEMP = TEMP - CONJG(AP(K))*X(IX)
  328. IX = IX + INCX
  329. 130 CONTINUE
  330. IF (NOUNIT) TEMP = TEMP/CONJG(AP(KK+J-1))
  331. END IF
  332. X(JX) = TEMP
  333. JX = JX + INCX
  334. KK = KK + J
  335. 140 CONTINUE
  336. END IF
  337. ELSE
  338. KK = (N* (N+1))/2
  339. IF (INCX.EQ.1) THEN
  340. DO 170 J = N,1,-1
  341. TEMP = X(J)
  342. K = KK
  343. IF (NOCONJ) THEN
  344. DO 150 I = N,J + 1,-1
  345. TEMP = TEMP - AP(K)*X(I)
  346. K = K - 1
  347. 150 CONTINUE
  348. IF (NOUNIT) TEMP = TEMP/AP(KK-N+J)
  349. ELSE
  350. DO 160 I = N,J + 1,-1
  351. TEMP = TEMP - CONJG(AP(K))*X(I)
  352. K = K - 1
  353. 160 CONTINUE
  354. IF (NOUNIT) TEMP = TEMP/CONJG(AP(KK-N+J))
  355. END IF
  356. X(J) = TEMP
  357. KK = KK - (N-J+1)
  358. 170 CONTINUE
  359. ELSE
  360. KX = KX + (N-1)*INCX
  361. JX = KX
  362. DO 200 J = N,1,-1
  363. TEMP = X(JX)
  364. IX = KX
  365. IF (NOCONJ) THEN
  366. DO 180 K = KK,KK - (N- (J+1)),-1
  367. TEMP = TEMP - AP(K)*X(IX)
  368. IX = IX - INCX
  369. 180 CONTINUE
  370. IF (NOUNIT) TEMP = TEMP/AP(KK-N+J)
  371. ELSE
  372. DO 190 K = KK,KK - (N- (J+1)),-1
  373. TEMP = TEMP - CONJG(AP(K))*X(IX)
  374. IX = IX - INCX
  375. 190 CONTINUE
  376. IF (NOUNIT) TEMP = TEMP/CONJG(AP(KK-N+J))
  377. END IF
  378. X(JX) = TEMP
  379. JX = JX - INCX
  380. KK = KK - (N-J+1)
  381. 200 CONTINUE
  382. END IF
  383. END IF
  384. END IF
  385. *
  386. RETURN
  387. *
  388. * End of CTPSV .
  389. *
  390. END